Skip to content

Commit

Permalink
Merge branch 'master' into ss/handle_NeptuneUnsupportedType_error
Browse files Browse the repository at this point in the history
  • Loading branch information
SiddhantSadangi authored Jan 4, 2024
2 parents 8c5cdca + 1e91d11 commit 22ae23e
Show file tree
Hide file tree
Showing 2 changed files with 9 additions and 8 deletions.
9 changes: 5 additions & 4 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
@@ -1,10 +1,11 @@
## [UNRELEASED] neptune-sklearn 2.2.0

### Fixes
- `create_*_summary()` now does not throw a `NeptuneUnsupportedType` error if expected metadata is not found

### Changes
- Bumped minimum supported Python version to 3.8
- Bumped minimum supported Python version to 3.8 ([#21](https://github.com/neptune-ai/neptune-sklearn/pull/21))

### Fixes
- `create_*_summary()` now does not throw a `NeptuneUnsupportedType` error if expected metadata is not found ([#21](https://github.com/neptune-ai/neptune-sklearn/pull/21))
- Fixed method names in docstrings ([#18](https://github.com/neptune-ai/neptune-sklearn/pull/18))

## neptune-sklearn 2.1.0

Expand Down
8 changes: 4 additions & 4 deletions src/neptune_sklearn/impl/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -110,8 +110,8 @@ def create_regressor_summary(regressor, X_train, X_test, y_train, y_test, nrows=
log_charts (`bool`, optional): Whether to calculate and log chart visualizations.
Note: Calculating visualizations is potentially expensive depending on input data and regressor,
and may take some time to finish. This is equivalent to calling the following functions from
this module: `log_learning_curve_chart()`, `log_feature_importance_chart()`, `log_residuals_chart()`,
`log_prediction_error_chart()`, and `log_cooks_distance_chart()`.
this module: `create_learning_curve_chart()`, `create_feature_importance_chart()`, `create_residuals_chart()`,
`create_prediction_error_chart()`, and `create_cooks_distance_chart()`.
Returns:
`dict` with all summary items.
Expand Down Expand Up @@ -185,8 +185,8 @@ def create_classifier_summary(classifier, X_train, X_test, y_train, y_test, nrow
log_charts (`bool`, optional): Whether to calculate and log chart visualizations.
Note: Calculating visualizations is potentially expensive depending on input data and classifier, and
may take some time to finish. This is equivalent to calling the following functions from this module:
`log_classification_report_chart()`, `log_confusion_matrix_chart()`, `log_roc_auc_chart()`,
`log_precision_recall_chart()`, and `log_class_prediction_error_chart()`.
`create_classification_report_chart()`, `create_confusion_matrix_chart()`, `create_roc_auc_chart()`,
`create_precision_recall_chart()`, and `create_class_prediction_error_chart()`.
Returns:
`dict` with all summary items.
Expand Down

0 comments on commit 22ae23e

Please sign in to comment.