Computational and Numerical Linear Algebra
This repository contains example code and Python Jupyter notebooks on various topics related to computational and numerical linear algebra. The contents are divided into three units. Each bit of code corresponds to a youtube discussing it and the broader topics in linear algebra.
- Introduction to Linear Systems
- Video: https://youtu.be/8E2858kWVEw
- Triangular Matrices
- Video: https://youtu.be/C5yRi7EbKXM
- Forward and Backwards Substitution
- Video: https://youtu.be/hnBpWrE7L4k
- Gaussian Elimination
- Video: https://youtu.be/59TAcVWZ0LY
- LU Decomposition
- Video: https://youtu.be/joDOPaHVDnI
- LDV Decomposition
- Cholesky Decomposition
- Video: https://youtu.be/o5V69gQcLt0
- LDL Transpose Decomposition
- Non-Square Linear Systems
- Video: https://youtu.be/aoG6Ydxh_Fc
- The Method of Least Squares
- Video: https://youtu.be/KP3OvpPXtys
- Line Fitting
- Video: https://youtu.be/AMkUVQAw6MU
- Polynomial Fitting
- Video: https://youtu.be/TZAtc06QkmM
- Exponent Fitting
- Video: https://youtu.be/aObGTXd6Oug
-
Orthogonal and Orthonormal Sets of Vectors
- Video: https://youtu.be/pi70r8xBvnw
-
- Video: https://youtu.be/SChiY-2MiWo
-
Benchmarking Orthonormal Systems
- Video: https://youtu.be/3o4XWIJTNxI
-
- Video: https://youtu.be/kyG8YMIfNA0
-
Numerical Methods for Computing Eigenvalues
- Video: https://youtu.be/5sFQdEl9MTU
-
- Video: https://youtu.be/O9loiz1AcZg
- The Moore-Penrose Pseudo-Inverse
- Video: TBD