Skip to content

Commit

Permalink
Merge branch 'develop' into repair_graph
Browse files Browse the repository at this point in the history
  • Loading branch information
dyashuni authored Nov 6, 2023
2 parents 5190584 + 2142dc6 commit 21fd098
Show file tree
Hide file tree
Showing 16 changed files with 885 additions and 48 deletions.
4 changes: 4 additions & 0 deletions .github/workflows/build.yml
Original file line number Diff line number Diff line change
Expand Up @@ -67,11 +67,15 @@ jobs:
./example_mt_search
./example_mt_filter
./example_mt_replace_deleted
./example_multivector_search
./example_epsilon_search
./searchKnnCloserFirst_test
./searchKnnWithFilter_test
./multiThreadLoad_test
./multiThread_replace_test
./test_updates
./test_updates update
./repair_test
./multivector_search_test
./epsilon_search_test
shell: bash
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -10,3 +10,4 @@ var/
.vscode/
.vs/
**.DS_Store
*.pyc
12 changes: 12 additions & 0 deletions CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -57,6 +57,12 @@ if(HNSWLIB_EXAMPLES)
add_executable(example_search examples/cpp/example_search.cpp)
target_link_libraries(example_search hnswlib)

add_executable(example_epsilon_search examples/cpp/example_epsilon_search.cpp)
target_link_libraries(example_epsilon_search hnswlib)

add_executable(example_multivector_search examples/cpp/example_multivector_search.cpp)
target_link_libraries(example_multivector_search hnswlib)

add_executable(example_filter examples/cpp/example_filter.cpp)
target_link_libraries(example_filter hnswlib)

Expand All @@ -73,6 +79,12 @@ if(HNSWLIB_EXAMPLES)
target_link_libraries(example_mt_replace_deleted hnswlib)

# tests
add_executable(multivector_search_test tests/cpp/multivector_search_test.cpp)
target_link_libraries(multivector_search_test hnswlib)

add_executable(epsilon_search_test tests/cpp/epsilon_search_test.cpp)
target_link_libraries(epsilon_search_test hnswlib)

add_executable(test_updates tests/cpp/updates_test.cpp)
target_link_libraries(test_updates hnswlib)

Expand Down
4 changes: 3 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -79,7 +79,7 @@ For other spaces use the nmslib library https://github.com/nmslib/nmslib.

* `set_num_threads(num_threads)` set the default number of cpu threads used during data insertion/querying.

* `get_items(ids)` - returns a numpy array (shape:`N*dim`) of vectors that have integer identifiers specified in `ids` numpy vector (shape:`N`). Note that for cosine similarity it currently returns **normalized** vectors.
* `get_items(ids, return_type = 'numpy')` - returns a numpy array (shape:`N*dim`) of vectors that have integer identifiers specified in `ids` numpy vector (shape:`N`) if `return_type` is `list` return list of lists. Note that for cosine similarity it currently returns **normalized** vectors.

* `get_ids_list()` - returns a list of all elements' ids.

Expand Down Expand Up @@ -229,6 +229,8 @@ print("Recall for two batches:", np.mean(labels.reshape(-1) == np.arange(len(dat
* filtering during the search with a boolean function
* deleting the elements and reusing the memory of the deleted elements for newly added elements
* multithreaded usage
* multivector search
* epsilon search


### Bindings installation
Expand Down
6 changes: 5 additions & 1 deletion examples/cpp/EXAMPLES.md
Original file line number Diff line number Diff line change
Expand Up @@ -182,4 +182,8 @@ int main() {
Multithreaded examples:
* Creating index, inserting elements, searching [example_mt_search.cpp](example_mt_search.cpp)
* Filtering during the search with a boolean function [example_mt_filter.cpp](example_mt_filter.cpp)
* Reusing the memory of the deleted elements when new elements are being added [example_mt_replace_deleted.cpp](example_mt_replace_deleted.cpp)
* Reusing the memory of the deleted elements when new elements are being added [example_mt_replace_deleted.cpp](example_mt_replace_deleted.cpp)

More examples:
* Multivector search [example_multivector_search.cpp](example_multivector_search.cpp)
* Epsilon search [example_epsilon_search.cpp](example_epsilon_search.cpp)
66 changes: 66 additions & 0 deletions examples/cpp/example_epsilon_search.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,66 @@
#include "../../hnswlib/hnswlib.h"

typedef unsigned int docidtype;
typedef float dist_t;

int main() {
int dim = 16; // Dimension of the elements
int max_elements = 10000; // Maximum number of elements, should be known beforehand
int M = 16; // Tightly connected with internal dimensionality of the data
// strongly affects the memory consumption
int ef_construction = 200; // Controls index search speed/build speed tradeoff
int min_num_candidates = 100; // Minimum number of candidates to search in the epsilon region
// this parameter is similar to ef

int num_queries = 5;
float epsilon2 = 2.0; // Squared distance to query

// Initing index
hnswlib::L2Space space(dim);
hnswlib::HierarchicalNSW<dist_t>* alg_hnsw = new hnswlib::HierarchicalNSW<dist_t>(&space, max_elements, M, ef_construction);

// Generate random data
std::mt19937 rng;
rng.seed(47);
std::uniform_real_distribution<> distrib_real;

size_t data_point_size = space.get_data_size();
char* data = new char[data_point_size * max_elements];
for (int i = 0; i < max_elements; i++) {
char* point_data = data + i * data_point_size;
for (int j = 0; j < dim; j++) {
char* vec_data = point_data + j * sizeof(float);
float value = distrib_real(rng);
*(float*)vec_data = value;
}
}

// Add data to index
for (int i = 0; i < max_elements; i++) {
hnswlib::labeltype label = i;
char* point_data = data + i * data_point_size;
alg_hnsw->addPoint(point_data, label);
}

// Query random vectors
for (int i = 0; i < num_queries; i++) {
char* query_data = new char[data_point_size];
for (int j = 0; j < dim; j++) {
size_t offset = j * sizeof(float);
char* vec_data = query_data + offset;
float value = distrib_real(rng);
*(float*)vec_data = value;
}
std::cout << "Query #" << i << "\n";
hnswlib::EpsilonSearchStopCondition<dist_t> stop_condition(epsilon2, min_num_candidates, max_elements);
std::vector<std::pair<float, hnswlib::labeltype>> result =
alg_hnsw->searchStopConditionClosest(query_data, stop_condition);
size_t num_vectors = result.size();
std::cout << "Found " << num_vectors << " vectors\n";
delete[] query_data;
}

delete[] data;
delete alg_hnsw;
return 0;
}
83 changes: 83 additions & 0 deletions examples/cpp/example_multivector_search.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,83 @@
#include "../../hnswlib/hnswlib.h"

typedef unsigned int docidtype;
typedef float dist_t;

int main() {
int dim = 16; // Dimension of the elements
int max_elements = 10000; // Maximum number of elements, should be known beforehand
int M = 16; // Tightly connected with internal dimensionality of the data
// strongly affects the memory consumption
int ef_construction = 200; // Controls index search speed/build speed tradeoff

int num_queries = 5;
int num_docs = 5; // Number of documents to search
int ef_collection = 6; // Number of candidate documents during the search
// Controlls the recall: higher ef leads to better accuracy, but slower search
docidtype min_doc_id = 0;
docidtype max_doc_id = 9;

// Initing index
hnswlib::MultiVectorL2Space<docidtype> space(dim);
hnswlib::HierarchicalNSW<dist_t>* alg_hnsw = new hnswlib::HierarchicalNSW<dist_t>(&space, max_elements, M, ef_construction);

// Generate random data
std::mt19937 rng;
rng.seed(47);
std::uniform_real_distribution<> distrib_real;
std::uniform_int_distribution<docidtype> distrib_docid(min_doc_id, max_doc_id);

size_t data_point_size = space.get_data_size();
char* data = new char[data_point_size * max_elements];
for (int i = 0; i < max_elements; i++) {
// set vector value
char* point_data = data + i * data_point_size;
for (int j = 0; j < dim; j++) {
char* vec_data = point_data + j * sizeof(float);
float value = distrib_real(rng);
*(float*)vec_data = value;
}
// set document id
docidtype doc_id = distrib_docid(rng);
space.set_doc_id(point_data, doc_id);
}

// Add data to index
std::unordered_map<hnswlib::labeltype, docidtype> label_docid_lookup;
for (int i = 0; i < max_elements; i++) {
hnswlib::labeltype label = i;
char* point_data = data + i * data_point_size;
alg_hnsw->addPoint(point_data, label);
label_docid_lookup[label] = space.get_doc_id(point_data);
}

// Query random vectors
size_t query_size = dim * sizeof(float);
for (int i = 0; i < num_queries; i++) {
char* query_data = new char[query_size];
for (int j = 0; j < dim; j++) {
size_t offset = j * sizeof(float);
char* vec_data = query_data + offset;
float value = distrib_real(rng);
*(float*)vec_data = value;
}
std::cout << "Query #" << i << "\n";
hnswlib::MultiVectorSearchStopCondition<docidtype, dist_t> stop_condition(space, num_docs, ef_collection);
std::vector<std::pair<float, hnswlib::labeltype>> result =
alg_hnsw->searchStopConditionClosest(query_data, stop_condition);
size_t num_vectors = result.size();

std::unordered_map<docidtype, size_t> doc_counter;
for (auto pair: result) {
hnswlib::labeltype label = pair.second;
docidtype doc_id = label_docid_lookup[label];
doc_counter[doc_id] += 1;
}
std::cout << "Found " << doc_counter.size() << " documents, " << num_vectors << " vectors\n";
delete[] query_data;
}

delete[] data;
delete alg_hnsw;
return 0;
}
Loading

0 comments on commit 21fd098

Please sign in to comment.