Pytorch Re-Implementation of NeRF (Neural Radiance Fields)
Paper : https://arxiv.org/abs/2003.08934
conda env create -f environment.yml
conda activate nerf
Download data for two example datasets: lego
and fern
bash download_data.sh
Download more dataset from link below https://drive.google.com/drive/folders/128yBriW1IG_3NJ5Rp7APSTZsJqdJdfc1
synthetic datasets : [chair, drums, ficus, hotdog, lego, materials, mic, ship] llff datasets : [fern, flower, fortress, horns, leaves, orchids, room, trex]
nerf_synthetic
|-- chair
|-- train
|-- r_0.png
|-- r_1.png
...
|-- r_99.png
|-- test
|-- val
|-- transforms_train.json
|-- transforms_test.json
|-- transforms_val.json
|-- drums
...
nerf_llff_data
|-- fern
|-- images
|-- IMG_0000.JPG
|-- IMG_0001.JPG
...
|-- sparse
|-- database.db
|-- poses_bounds.npy
...
|-- flower
...
set 'data_root' path in config file to dataset root
python main.py --config configs/blender/lego.txt
python main.py --config configs/llff/fern.txt
data | model | Batch rays | resolution | PSNR | SSIM | LPIPS |
---|---|---|---|---|---|---|
chair | 200,000 | 4096 | 800 x 800 | 33.00 | 0.967 | 0.046 |
drums | 200,000 | 4096 | 800 x 800 | 25.01 | 0.925 | 0.091 |
ficus | 200,000 | 4096 | 800 x 800 | 30.13 | 0.964 | 0.044 |
hotdog | 200,000 | 4096 | 800 x 800 | 36.18 | 0.974 | 0.121 |
lego | 200,000 | 4096 | 800 x 800 | 32.54 | 0.961 | 0.050 |
materials | 200,000 | 4096 | 800 x 800 | 29.62 | 0.949 | 0.063 |
mic | 200,000 | 4096 | 800 x 800 | 32.91 | 0.980 | 0.028 |
ship | 200,000 | 4096 | 800 x 800 | 28.65 | 0.856 | 0.206 |
mean | 200,000 | 4096 | 800 x 800 | 31.01 | 0.947 | 0.081 |
data | iter | Batch rays | resolution | PSNR | SSIM | LPIPS |
---|---|---|---|---|---|---|
chair | 200,000 | 4096 | 800 x 800 | 33.92 | 0.966 | 0.048 |
drums | 200,000 | 4096 | 800 x 800 | 24.96 | 0.922 | 0.102 |
ficus | 200,000 | 4096 | 800 x 800 | 29.82 | 0.960 | 0.063 |
hotdog | 200,000 | 4096 | 800 x 800 | 36.20 | 0.974 | 0.049 |
lego | 200,000 | 4096 | 800 x 800 | 32.02 | 0.958 | 0.060 |
materials | 200,000 | 4096 | 800 x 800 | 29.41 | 0.943 | 0.076 |
mic | 200,000 | 4096 | 800 x 800 | 33.21 | 0.981 | 0.028 |
ship | 200,000 | 4096 | 800 x 800 | 28.47 | 0.854 | 0.186 |
mean | 200,000 | 4096 | 800 x 800 | 31.00 | 0.945 | 0.077 |
TEST RESULT of 200 images from Test Dataset
data | model | Batch rays | resolution | PSNR | SSIM | LPIPS |
---|---|---|---|---|---|---|
fern | Coarse+Fine | 4096 | 800 x 800 | 23.98 | 0.773 | 0.224 |
flower | Coarse+Fine | 4096 | 800 x 800 | 28.73 | 0.896 | 0.110 |
fortress | Coarse+Fine | 4096 | 800 x 800 | 32.02 | 0.925 | 0.081 |
horns | Coarse+Fine | 4096 | 800 x 800 | 30.11 | 0.921 | 0.125 |
leaves | Coarse+Fine | 4096 | 800 x 800 | 22.51 | 0.815 | 0.187 |
orchids | Coarse+Fine | 4096 | 800 x 800 | 20.74 | 0.734 | 0.210 |
room | Coarse+Fine | 4096 | 800 x 800 | 32.78 | 0.963 | 0.094 |
trex | Coarse+Fine | 4096 | 800 x 800 | 26.38 | 0.924 | 0.149 |
mean | Coarse+Fine | 4096 | 800 x 800 | 27.16 | 0.869 | 0.148 |
SSIM code from https://github.com/dingkeyan93/IQA-optimization
LPIPS from https://pypi.org/project/lpips/
ubuntu 20.04
GeForce RTX 3090
cuda : v11.1
cuDNN : v8.0.5
Render RGB | Render DISP |
---|---|
Render RGB | Render DISP |
---|---|