Skip to content
/ HuSST Public

Hungarian version of the Stanford Sentiment Treebank

License

Notifications You must be signed in to change notification settings

nytud/HuSST

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

HuSST

This is the home repository for the Hungarian version of the Stanford Sentiment Treebank. This dataset is also part of the Hungarian Language Understanding Evaluation Benchmark Kit HuLU. The corpus was created by translating and re-annotating the full sentences of the SST.

Data

The files are in the 'data' folder. The dataset contains 11 683 sentences. Each sentence is annotated for its sentiment on a three-point scale.

The train, validation and test sets contain 9 347, 1 168 and 1 168 sentences, respectively. The test set is distributed without the labels; to evaluate your model please contact us ([email protected]) or visit HuLU's website for an automatic evaluation (under construction). The metric of the evaluation is accuracy.

Data format

The data files are in json format. The keys are the following:

Sent_id: unique id of the instances;

Sent: the sentence;

Label: the sentiment label of the sentence: "negative", "neutral" or "positive".

Guidelines

The annotation guidelines (in Hungarian) are in the 'guidelines' folder.

License and usage

Citation

If you use this resource or any part of its documentation, please refer to:

Noémi Ligeti-Nagy, Gergő Ferenczi, Enikő Héja, László János Laki, Noémi Vadász, Zijian Győző Yang, and Tamás Váradi. 2024. HuLU: Hungarian Language Understanding Benchmark Kit. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), pages 8360–8371, Torino, Italia. ELRA and ICCL.

@inproceedings{ligeti-nagy-etal-2024-hulu-hungarian,
    title = "{H}u{LU}: {H}ungarian Language Understanding Benchmark Kit",
    author = "Ligeti-Nagy, No{\'e}mi  and
      Ferenczi, Gerg{\H{o}}  and
      H{\'e}ja, Enik{\H{o}}  and
      Laki, L{\'a}szl{\'o} J{\'a}nos  and
      Vad{\'a}sz, No{\'e}mi  and
      Yang, Zijian Gy{\H{o}}z{\H{o}}  and
      V{\'a}radi, Tam{\'a}s",
    editor = "Calzolari, Nicoletta  and
      Kan, Min-Yen  and
      Hoste, Veronique  and
      Lenci, Alessandro  and
      Sakti, Sakriani  and
      Xue, Nianwen",
    booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
    month = may,
    year = "2024",
    address = "Torino, Italia",
    publisher = "ELRA and ICCL",
    url = "https://aclanthology.org/2024.lrec-main.733",
    pages = "8360--8371",
}

and to:

Ligeti-Nagy, N., Ferenczi, G., Héja, E., Jelencsik-Mátyus, K., Laki, L. J., Vadász, N., Yang, Z. Gy. and Váradi, T. (2022) HuLU: magyar nyelvű benchmark adatbázis kiépítése a neurális nyelvmodellek kiértékelése céljából [HuLU: Hungarian benchmark dataset to evaluate neural language models]. In: Berend, G., Gosztolya, G. and Vincze, V. (eds), XVIII. Magyar Számítógépes Nyelvészeti Konferencia. Szeged, Szegedi Tudományegyetem, Informatikai Intézet. 431–446.

@inproceedings{ligetinagy2022hulu,
  title={HuLU: magyar nyelvű benchmark adatbázis kiépítése a neurális nyelvmodellek kiértékelése céljából},
  author={Ligeti-Nagy, N. and Ferenczi, G. and Héja, E. and Jelencsik-Mátyus, K. and Laki, L. J. and Vadász, N. and Yang, Z. Gy. and Váradi, T.},
  booktitle={XVIII. Magyar Számítógépes Nyelvészeti Konferencia},
  year={2022},
  pages = {431--446},
  editors = {Berend, G. and Gosztolya, G. and Vincze, V.},
  address = {Szeged},
  publisher = {Szegedi Tudományegyetem, Informatikai Intézet}
}

and

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher Manning, Andrew Ng and Christopher Potts (2013), Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. 1631--1642.

@inproceedings{socher-etal-2013-recursive,
    title = "Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank",
    author = "Socher, Richard  and
      Perelygin, Alex  and
      Wu, Jean  and
      Chuang, Jason  and
      Manning, Christopher D.  and
      Ng, Andrew  and
      Potts, Christopher",
    booktitle = "Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing",
    month = oct,
    year = "2013",
    address = "Seattle, Washington, USA",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/D13-1170",
    pages = "1631--1642",
}

About

Hungarian version of the Stanford Sentiment Treebank

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published