Skip to content

Commit

Permalink
[MMSIG] [Doc] Update data_preprocessor.md (#2055)
Browse files Browse the repository at this point in the history
[Doc] Update data_preprocessor.md
  • Loading branch information
jinxianwei authored Dec 11, 2023
1 parent cd183d9 commit 1f4d243
Show file tree
Hide file tree
Showing 2 changed files with 88 additions and 4 deletions.
46 changes: 43 additions & 3 deletions docs/en/advanced_guides/data_preprocessor.md
Original file line number Diff line number Diff line change
@@ -1,5 +1,45 @@
# Data pre-processor \[Coming Soon!\]
# Data pre-processor

We're improving this documentation. Don't hesitate to join us!
## The position of the data preprocessor in the training pipeline.

[Make a pull request](https://github.com/open-mmlab/mmagic/compare) or [discuss with us](https://github.com/open-mmlab/mmagic/discussions/1429)!
During the model training process, image data undergoes data augmentation using the transforms provided by mmcv. The augmented data is then loaded into a dataloader. Subsequently, a preprocessor is used to move the data from the CPU to CUDA (GPU), perform padding, and normalize the data.

Below is an example of the `train_pipeline` in the complete configuration file using `configs/_base_/datasets/unpaired_imgs_256x256.py`. The train_pipeline typically defines a sequence of transformations applied to training images using the mmcv library. This pipeline is designed to prevent redundancy in the transformation functions across different downstream algorithm libraries.

```python
...
train_pipeline = [
dict(color_type='color', key='img_A', type='LoadImageFromFile'),
dict(color_type='color', key='img_B', type='LoadImageFromFile'),
dict(auto_remap=True, mapping=dict(img=['img_A', 'img_B',]),
share_random_params=True,
transforms=[dict(interpolation='bicubic', scale=(286, 286,), type='Resize'),
dict(crop_size=(256, 256,), keys=['img',], random_crop=True, type='Crop'),],
type='TransformBroadcaster'),
dict(direction='horizontal', keys=['img_A', ], type='Flip'),
dict(direction='horizontal', keys=['img_B', ], type='Flip'),
dict(mapping=dict(img_mask='img_B', img_photo='img_A'),
remapping=dict(img_mask='img_mask', img_photo='img_photo'),
type='KeyMapper'),
dict(data_keys=['img_photo', 'img_mask',],
keys=['img_photo', 'img_mask',], type='PackInputs'),
]
...
```

In the `train_step` function in the `mmagic/models/editors/cyclegan/cyclegan.py` script, the data preprocessing steps involve moving, concatenating, and normalizing the transformed data before feeding it into the neural network. Below is an example of the relevant code logic:

```python
...
message_hub = MessageHub.get_current_instance()
curr_iter = message_hub.get_info('iter')
data = self.data_preprocessor(data, True)
disc_optimizer_wrapper = optim_wrapper['discriminators']

inputs_dict = data['inputs']
outputs, log_vars = dict(), dict()
...
```

In mmagic, the code implementation for the data processor is located at `mmagic/models/data_preprocessors/data_preprocessor.py`. The data processing workflow is as follows:
![image](https://github.com/jinxianwei/CloudImg/assets/81373517/f52a92ab-f86d-486d-86ac-a2f388a83ced)
46 changes: 45 additions & 1 deletion docs/zh_cn/advanced_guides/data_preprocessor.md
Original file line number Diff line number Diff line change
@@ -1 +1,45 @@
# 数据预处理器(待更新)
# 数据预处理器

## 数据preprocessor在训练流程中的位置

在模型训练过程中,图片数据先通过mmcv中的transform进行数据增强,并加载为dataloader,而后通过preprocessor将数据从cpu搬运到cuda上,并进行padding和归一化

mmcv中的transform来自各下游算法库中transform的迁移,防止各下游算法库中transform的冗余,以`configs/_base_/datasets/unpaired_imgs_256x256.py`为例,其完整config中的`train_pipeline`如下所示

```python
...
train_pipeline = [
dict(color_type='color', key='img_A', type='LoadImageFromFile'),
dict(color_type='color', key='img_B', type='LoadImageFromFile'),
dict(auto_remap=True, mapping=dict(img=['img_A', 'img_B',]),
share_random_params=True,
transforms=[dict(interpolation='bicubic', scale=(286, 286,), type='Resize'),
dict(crop_size=(256, 256,), keys=['img',], random_crop=True, type='Crop'),],
type='TransformBroadcaster'),
dict(direction='horizontal', keys=['img_A', ], type='Flip'),
dict(direction='horizontal', keys=['img_B', ], type='Flip'),
dict(mapping=dict(img_mask='img_B', img_photo='img_A'),
remapping=dict(img_mask='img_mask', img_photo='img_photo'),
type='KeyMapper'),
dict(data_keys=['img_photo', 'img_mask',],
keys=['img_photo', 'img_mask',], type='PackInputs'),
]
...
```

data_preprocessor会对transform后的数据进行数据搬移,拼接和归一化,而后输入到网络中,以`mmagic/models/editors/cyclegan/cyclegan.py`中的`train_step`函数为例,代码中的引用逻辑如下

```python
...
message_hub = MessageHub.get_current_instance()
curr_iter = message_hub.get_info('iter')
data = self.data_preprocessor(data, True)
disc_optimizer_wrapper = optim_wrapper['discriminators']

inputs_dict = data['inputs']
outputs, log_vars = dict(), dict()
...
```

在mmagic中的data_processor,其代码实现路径为`mmagic/models/data_preprocessors/data_preprocessor.py`,其数据处理流程如下图
![image](https://github.com/jinxianwei/CloudImg/assets/81373517/f52a92ab-f86d-486d-86ac-a2f388a83ced)

0 comments on commit 1f4d243

Please sign in to comment.