-
Notifications
You must be signed in to change notification settings - Fork 709
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Refactor model implementations (#225)
* refactor CFlow implementation * refactor DFM implementation * refactor PADIM implementation * refactor PatchCore implementation * refactor STFPM implementation * revert model tests * remove unintentionally committed file * model.py -> lightning_model.py
- Loading branch information
Showing
29 changed files
with
1,550 additions
and
1,363 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,97 @@ | ||
"""Anomaly Map Generator for CFlow model implementation.""" | ||
|
||
# Copyright (C) 2020 Intel Corporation | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions | ||
# and limitations under the License. | ||
|
||
from typing import List, Tuple, Union, cast | ||
|
||
import torch | ||
import torch.nn.functional as F | ||
from omegaconf import ListConfig | ||
from torch import Tensor | ||
|
||
|
||
class AnomalyMapGenerator: | ||
"""Generate Anomaly Heatmap.""" | ||
|
||
def __init__( | ||
self, | ||
image_size: Union[ListConfig, Tuple], | ||
pool_layers: List[str], | ||
): | ||
self.distance = torch.nn.PairwiseDistance(p=2, keepdim=True) | ||
self.image_size = image_size if isinstance(image_size, tuple) else tuple(image_size) | ||
self.pool_layers: List[str] = pool_layers | ||
|
||
def compute_anomaly_map( | ||
self, distribution: Union[List[Tensor], List[List]], height: List[int], width: List[int] | ||
) -> Tensor: | ||
"""Compute the layer map based on likelihood estimation. | ||
Args: | ||
distribution: Probability distribution for each decoder block | ||
height: blocks height | ||
width: blocks width | ||
Returns: | ||
Final Anomaly Map | ||
""" | ||
|
||
test_map: List[Tensor] = [] | ||
for layer_idx in range(len(self.pool_layers)): | ||
test_norm = torch.tensor(distribution[layer_idx], dtype=torch.double) # pylint: disable=not-callable | ||
test_norm -= torch.max(test_norm) # normalize likelihoods to (-Inf:0] by subtracting a constant | ||
test_prob = torch.exp(test_norm) # convert to probs in range [0:1] | ||
test_mask = test_prob.reshape(-1, height[layer_idx], width[layer_idx]) | ||
# upsample | ||
test_map.append( | ||
F.interpolate( | ||
test_mask.unsqueeze(1), size=self.image_size, mode="bilinear", align_corners=True | ||
).squeeze() | ||
) | ||
# score aggregation | ||
score_map = torch.zeros_like(test_map[0]) | ||
for layer_idx in range(len(self.pool_layers)): | ||
score_map += test_map[layer_idx] | ||
score_mask = score_map | ||
# invert probs to anomaly scores | ||
anomaly_map = score_mask.max() - score_mask | ||
|
||
return anomaly_map | ||
|
||
def __call__(self, **kwargs: Union[List[Tensor], List[int], List[List]]) -> Tensor: | ||
"""Returns anomaly_map. | ||
Expects `distribution`, `height` and 'width' keywords to be passed explicitly | ||
Example | ||
>>> anomaly_map_generator = AnomalyMapGenerator(image_size=tuple(hparams.model.input_size), | ||
>>> pool_layers=pool_layers) | ||
>>> output = self.anomaly_map_generator(distribution=dist, height=height, width=width) | ||
Raises: | ||
ValueError: `distribution`, `height` and 'width' keys are not found | ||
Returns: | ||
torch.Tensor: anomaly map | ||
""" | ||
if not ("distribution" in kwargs and "height" in kwargs and "width" in kwargs): | ||
raise KeyError(f"Expected keys `distribution`, `height` and `width`. Found {kwargs.keys()}") | ||
|
||
# placate mypy | ||
distribution: List[Tensor] = cast(List[Tensor], kwargs["distribution"]) | ||
height: List[int] = cast(List[int], kwargs["height"]) | ||
width: List[int] = cast(List[int], kwargs["width"]) | ||
return self.compute_anomaly_map(distribution, height, width) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,156 @@ | ||
"""CFLOW: Real-Time Unsupervised Anomaly Detection via Conditional Normalizing Flows. | ||
https://arxiv.org/pdf/2107.12571v1.pdf | ||
""" | ||
|
||
# Copyright (C) 2020 Intel Corporation | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions | ||
# and limitations under the License. | ||
|
||
import einops | ||
import torch | ||
import torch.nn.functional as F | ||
from pytorch_lightning.callbacks import EarlyStopping | ||
from torch import optim | ||
|
||
from anomalib.models.cflow.torch_model import CflowModel | ||
from anomalib.models.cflow.utils import get_logp, positional_encoding_2d | ||
from anomalib.models.components import AnomalyModule | ||
|
||
__all__ = ["CflowLightning"] | ||
|
||
|
||
class CflowLightning(AnomalyModule): | ||
"""PL Lightning Module for the CFLOW algorithm.""" | ||
|
||
def __init__(self, hparams): | ||
super().__init__(hparams) | ||
|
||
self.model: CflowModel = CflowModel(hparams) | ||
self.loss_val = 0 | ||
self.automatic_optimization = False | ||
|
||
def configure_callbacks(self): | ||
"""Configure model-specific callbacks.""" | ||
early_stopping = EarlyStopping( | ||
monitor=self.hparams.model.early_stopping.metric, | ||
patience=self.hparams.model.early_stopping.patience, | ||
mode=self.hparams.model.early_stopping.mode, | ||
) | ||
return [early_stopping] | ||
|
||
def configure_optimizers(self) -> torch.optim.Optimizer: | ||
"""Configures optimizers for each decoder. | ||
Returns: | ||
Optimizer: Adam optimizer for each decoder | ||
""" | ||
decoders_parameters = [] | ||
for decoder_idx in range(len(self.model.pool_layers)): | ||
decoders_parameters.extend(list(self.model.decoders[decoder_idx].parameters())) | ||
|
||
optimizer = optim.Adam( | ||
params=decoders_parameters, | ||
lr=self.hparams.model.lr, | ||
) | ||
return optimizer | ||
|
||
def training_step(self, batch, _): # pylint: disable=arguments-differ | ||
"""Training Step of CFLOW. | ||
For each batch, decoder layers are trained with a dynamic fiber batch size. | ||
Training step is performed manually as multiple training steps are involved | ||
per batch of input images | ||
Args: | ||
batch: Input batch | ||
_: Index of the batch. | ||
Returns: | ||
Loss value for the batch | ||
""" | ||
opt = self.optimizers() | ||
self.model.encoder.eval() | ||
|
||
images = batch["image"] | ||
activation = self.model.encoder(images) | ||
avg_loss = torch.zeros([1], dtype=torch.float64).to(images.device) | ||
|
||
height = [] | ||
width = [] | ||
for layer_idx, layer in enumerate(self.model.pool_layers): | ||
encoder_activations = activation[layer].detach() # BxCxHxW | ||
|
||
batch_size, dim_feature_vector, im_height, im_width = encoder_activations.size() | ||
image_size = im_height * im_width | ||
embedding_length = batch_size * image_size # number of rows in the conditional vector | ||
|
||
height.append(im_height) | ||
width.append(im_width) | ||
# repeats positional encoding for the entire batch 1 C H W to B C H W | ||
pos_encoding = einops.repeat( | ||
positional_encoding_2d(self.model.condition_vector, im_height, im_width).unsqueeze(0), | ||
"b c h w-> (tile b) c h w", | ||
tile=batch_size, | ||
).to(images.device) | ||
c_r = einops.rearrange(pos_encoding, "b c h w -> (b h w) c") # BHWxP | ||
e_r = einops.rearrange(encoder_activations, "b c h w -> (b h w) c") # BHWxC | ||
perm = torch.randperm(embedding_length) # BHW | ||
decoder = self.model.decoders[layer_idx].to(images.device) | ||
|
||
fiber_batches = embedding_length // self.model.fiber_batch_size # number of fiber batches | ||
assert fiber_batches > 0, "Make sure we have enough fibers, otherwise decrease N or batch-size!" | ||
|
||
for batch_num in range(fiber_batches): # per-fiber processing | ||
opt.zero_grad() | ||
if batch_num < (fiber_batches - 1): | ||
idx = torch.arange( | ||
batch_num * self.model.fiber_batch_size, (batch_num + 1) * self.model.fiber_batch_size | ||
) | ||
else: # When non-full batch is encountered batch_num * N will go out of bounds | ||
idx = torch.arange(batch_num * self.model.fiber_batch_size, embedding_length) | ||
# get random vectors | ||
c_p = c_r[perm[idx]] # NxP | ||
e_p = e_r[perm[idx]] # NxC | ||
# decoder returns the transformed variable z and the log Jacobian determinant | ||
p_u, log_jac_det = decoder(e_p, [c_p]) | ||
# | ||
decoder_log_prob = get_logp(dim_feature_vector, p_u, log_jac_det) | ||
log_prob = decoder_log_prob / dim_feature_vector # likelihood per dim | ||
loss = -F.logsigmoid(log_prob) | ||
self.manual_backward(loss.mean()) | ||
opt.step() | ||
avg_loss += loss.sum() | ||
|
||
return {"loss": avg_loss} | ||
|
||
def validation_step(self, batch, _): # pylint: disable=arguments-differ | ||
"""Validation Step of CFLOW. | ||
Similar to the training step, encoder features | ||
are extracted from the CNN for each batch, and anomaly | ||
map is computed. | ||
Args: | ||
batch: Input batch | ||
_: Index of the batch. | ||
Returns: | ||
Dictionary containing images, anomaly maps, true labels and masks. | ||
These are required in `validation_epoch_end` for feature concatenation. | ||
""" | ||
batch["anomaly_maps"] = self.model(batch["image"]) | ||
|
||
return batch |
Oops, something went wrong.