To download the raw CSV data for your analysis, browse here.
This Python library provides information about names:
- Popularity (rank)
- Country (105 countries are supported)
- Gender
It can give you an answer to some of those questions:
- Who is
Zoe
? Likely aFemale, United Kindgom
. - Knows
Philippe
? Likely aMale, France
. And with the spellingPhilipp
?Male, Germany
. - How about
Nikki
? Likely aFemale, United States
.
730K first names and 983K last names, extracted from the Facebook massive dump (533M users).
Available on PyPI:
pip install names-dataset
NOTE: The library requires 3.2GB of RAM to load the full dataset in memory. Make sure you have enough RAM to avoid MemoryError
.
Once it's installed, run those commands to familiarize yourself with the library:
from names_dataset import NameDataset, NameWrapper
# The library takes time to initialize because the database is massive. A tip is to include its initialization in your app's startup process.
nd = NameDataset()
print(NameWrapper(nd.search('Philippe')).describe)
# Male, France
print(NameWrapper(nd.search('Zoe')).describe)
# Female, United Kingdom
print(nd.search('Walter'))
# {'first_name': {'country': {'Argentina': 0.062, 'Austria': 0.037, 'Bolivia, Plurinational State of': 0.042, 'Colombia': 0.096, 'Germany': 0.044, 'Italy': 0.295, 'Peru': 0.185, 'United States': 0.159, 'Uruguay': 0.036, 'South Africa': 0.043}, 'gender': {'Female': 0.007, 'Male': 0.993}, 'rank': {'Argentina': 37, 'Austria': 34, 'Bolivia, Plurinational State of': 67, 'Colombia': 250, 'Germany': 214, 'Italy': 193, 'Peru': 27, 'United States': 317, 'Uruguay': 44, 'South Africa': 388}}, 'last_name': {'country': {'Austria': 0.036, 'Brazil': 0.039, 'Switzerland': 0.032, 'Germany': 0.299, 'France': 0.121, 'United Kingdom': 0.048, 'Italy': 0.09, 'Nigeria': 0.078, 'United States': 0.172, 'South Africa': 0.085}, 'gender': {}, 'rank': {'Austria': 106, 'Brazil': 805, 'Switzerland': 140, 'Germany': 39, 'France': 625, 'United Kingdom': 1823, 'Italy': 3564, 'Nigeria': 926, 'United States': 1210, 'South Africa': 1169}}}
print(nd.search('White'))
# {'first_name': {'country': {'United Arab Emirates': 0.044, 'Egypt': 0.294, 'France': 0.061, 'Hong Kong': 0.05, 'Iraq': 0.094, 'Italy': 0.117, 'Malaysia': 0.133, 'Saudi Arabia': 0.089, 'Taiwan, Province of China': 0.044, 'United States': 0.072}, 'gender': {'Female': 0.519, 'Male': 0.481}, 'rank': {'Taiwan, Province of China': 6940, 'United Arab Emirates': None, 'Egypt': None, 'France': None, 'Hong Kong': None, 'Iraq': None, 'Italy': None, 'Malaysia': None, 'Saudi Arabia': None, 'United States': None}}, 'last_name': {'country': {'Canada': 0.035, 'France': 0.016, 'United Kingdom': 0.296, 'Ireland': 0.028, 'Iraq': 0.016, 'Italy': 0.02, 'Jamaica': 0.017, 'Nigeria': 0.031, 'United States': 0.5, 'South Africa': 0.04}, 'gender': {}, 'rank': {'Canada': 46, 'France': 1041, 'United Kingdom': 18, 'Ireland': 66, 'Iraq': 1307, 'Italy': 2778, 'Jamaica': 35, 'Nigeria': 425, 'United States': 47, 'South Africa': 416}}}
print(nd.search('محمد'))
# {'first_name': {'country': {'Algeria': 0.018, 'Egypt': 0.441, 'Iraq': 0.12, 'Jordan': 0.027, 'Libya': 0.035, 'Saudi Arabia': 0.154, 'Sudan': 0.07, 'Syrian Arab Republic': 0.062, 'Turkey': 0.022, 'Yemen': 0.051}, 'gender': {'Female': 0.035, 'Male': 0.965}, 'rank': {'Algeria': 4, 'Egypt': 1, 'Iraq': 2, 'Jordan': 1, 'Libya': 1, 'Saudi Arabia': 1, 'Sudan': 1, 'Syrian Arab Republic': 1, 'Turkey': 18, 'Yemen': 1}}, 'last_name': {'country': {'Egypt': 0.453, 'Iraq': 0.096, 'Jordan': 0.015, 'Libya': 0.043, 'Palestine, State of': 0.016, 'Saudi Arabia': 0.118, 'Sudan': 0.146, 'Syrian Arab Republic': 0.058, 'Turkey': 0.017, 'Yemen': 0.037}, 'gender': {}, 'rank': {'Egypt': 2, 'Iraq': 3, 'Jordan': 1, 'Libya': 1, 'Palestine, State of': 1, 'Saudi Arabia': 3, 'Sudan': 1, 'Syrian Arab Republic': 2, 'Turkey': 44, 'Yemen': 1}}}
print(nd.get_top_names(n=10, gender='Male', country_alpha2='US'))
# {'US': {'M': ['Jose', 'David', 'Michael', 'John', 'Juan', 'Carlos', 'Luis', 'Chris', 'Alex', 'Daniel']}}
print(nd.get_top_names(n=5, country_alpha2='ES'))
# {'ES': {'M': ['Jose', 'Antonio', 'Juan', 'Manuel', 'David'], 'F': ['Maria', 'Ana', 'Carmen', 'Laura', 'Isabel']}}
print(nd.get_country_codes(alpha_2=True))
# ['AE', 'AF', 'AL', 'AO', 'AR', 'AT', 'AZ', 'BD', 'BE', 'BF', 'BG', 'BH', 'BI', 'BN', 'BO', 'BR', 'BW', 'CA', 'CH', 'CL', 'CM', 'CN', 'CO', 'CR', 'CY', 'CZ', 'DE', 'DJ', 'DK', 'DZ', 'EC', 'EE', 'EG', 'ES', 'ET', 'FI', 'FJ', 'FR', 'GB', 'GE', 'GH', 'GR', 'GT', 'HK', 'HN', 'HR', 'HT', 'HU', 'ID', 'IE', 'IL', 'IN', 'IQ', 'IR', 'IS', 'IT', 'JM', 'JO', 'JP', 'KH', 'KR', 'KW', 'KZ', 'LB', 'LT', 'LU', 'LY', 'MA', 'MD', 'MO', 'MT', 'MU', 'MV', 'MX', 'MY', 'NA', 'NG', 'NL', 'NO', 'OM', 'PA', 'PE', 'PH', 'PL', 'PR', 'PS', 'PT', 'QA', 'RS', 'RU', 'SA', 'SD', 'SE', 'SG', 'SI', 'SV', 'SY', 'TM', 'TN', 'TR', 'TW', 'US', 'UY', 'YE', 'ZA']
nd.first_names
# Dictionary of all the first names with their attributes.
nd.last_names
# Dictionary of all the last names with their attributes.
The search
call provides information about:
-
country
: The probability of the name belonging to a country. Only the top 10 countries matching the name are returned. -
gender
: The probability of the person to be aMale
orFemale
. -
rank
: The rank of the name in his country.1
means the most popular name. -
NOTE:
first_name/last_name
: thegender
does not apply tolast_name
.
The get_top_names
call gives the most popular names:
n
: The number of names to return matching some criteria. Default is 100.gender
: Filters onMale
orFemale
. Default is None (both are returned).use_first_names
: Filters on the first names or last names. Default is True.country_alpha2
: Filters on the country (e.g. GB is the United Kingdom). Default is None (all countries are returned).
The get_country_codes
returns the supported country codes (or full pycountry
objects).
alpha_2
: Only returns the country codes: 2-char code. Default is False.
The dataset is available here name_dataset.zip (3.3GB).
- The data contains 491,655,925 records from 106 countries.
- The uncompressed version takes around 10GB on the disk.
- Each country is in a separate CSV file.
- A CSV file contains rows of this format: first_name,last_name,gender,country_code.
- Each record is a real person.
- This version was generated from the massive Facebook Leak (533M accounts).
- Lists of names are not copyrightable, generally speaking, but if you want to be completely sure you should talk to a lawyer.
Afghanistan, Albania, Algeria, Angola, Argentina, Austria, Azerbaijan, Bahrain, Bangladesh, Belgium, Bolivia, Plurinational State of, Botswana, Brazil, Brunei Darussalam, Bulgaria, Burkina Faso, Burundi, Cambodia, Cameroon, Canada, Chile, China, Colombia, Costa Rica, Croatia, Cyprus, Czechia, Denmark, Djibouti, Ecuador, Egypt, El Salvador, Estonia, Ethiopia, Fiji, Finland, France, Georgia, Germany, Ghana, Greece, Guatemala, Haiti, Honduras, Hong Kong, Hungary, Iceland, India, Indonesia, Iran, Islamic Republic of, Iraq, Ireland, Israel, Italy, Jamaica, Japan, Jordan, Kazakhstan, Korea, Republic of, Kuwait, Lebanon, Libya, Lithuania, Luxembourg, Macao, Malaysia, Maldives, Malta, Mauritius, Mexico, Moldova, Republic of, Morocco, Namibia, Netherlands, Nigeria, Norway, Oman, Palestine, State of, Panama, Peru, Philippines, Poland, Portugal, Puerto Rico, Qatar, Russian Federation, Saudi Arabia, Serbia, Singapore, Slovenia, South Africa, Spain, Sudan, Sweden, Switzerland, Syrian Arab Republic, Taiwan, Province of China, Tunisia, Turkey, Turkmenistan, United Arab Emirates, United Kingdom, United States, Uruguay, Yemen.
🇲🇹🇪🇬🇧🇴🇳🇦🇹🇳🇷🇸🇯🇲🇦🇷🇯🇵🇰🇿🇸🇦🇺🇸🇦🇪🇭🇺🇭🇰🇶🇦🇸🇬🇩🇪🇾🇪🇲🇾🇭🇹🇵🇷🇨🇳🇦🇴🇹🇼🇸🇩🇧🇭🇧🇪🇪🇹🇪🇪🇨🇴🇬🇷🇧🇷🇷🇺🇱🇾🇸🇻🇰🇼🇰🇷🇦🇱🇸🇾🇧🇫🇨🇿🇨🇦🇴🇲🇩🇰🇨🇱🇧🇩🇧🇼🇫🇯🇮🇶🇮🇪🇿🇦🇨🇷🇯🇴🇰🇭🇵🇪🇺🇾🇮🇷🇲🇩🇫🇷🇲🇴🇳🇱🇬🇭🇨🇾🇩🇿🇮🇹🇬🇧🇧🇮🇮🇳🇫🇮🇦🇫🇵🇭🇦🇿🇬🇪🇨🇲🇮🇱🇪🇸🇱🇹🇩🇯🇬🇹🇱🇺🇵🇸🇹🇷🇵🇱🇮🇸🇳🇬🇵🇦🇭🇷🇸🇮🇭🇳🇦🇹🇲🇺🇸🇪🇲🇦🇨🇭🇧🇳🇲🇻🇳🇴🇪🇨🇮🇩🇧🇬🇵🇹🇲🇽🇱🇧🇹🇲
NOTE: It is unfortunately not possible to support more countries because the missing ones were not included in the original dataset.
@misc{NameDataset2021,
author = {Philippe Remy},
title = {Name Dataset},
year = {2021},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/philipperemy/name-dataset}},
}