Skip to content

Commit

Permalink
EIP101: some basic mathematical descriptions
Browse files Browse the repository at this point in the history
  • Loading branch information
pirapira committed Jan 19, 2018
1 parent b9495ce commit ab94a73
Showing 1 changed file with 42 additions and 0 deletions.
42 changes: 42 additions & 0 deletions Paper.tex
Original file line number Diff line number Diff line change
Expand Up @@ -1438,6 +1438,48 @@ \section{Precompiled Contracts}\label{app:precompiled}
\mathbf{o} &=& I_\mathbf{d}
\end{eqnarray}

\subsection{zkSNARK Related Precompiled Contracts}

We choose two numbers, both of which are prime.
\begin{eqnarray}
p &\equiv& 21888242871839275222246405745257275088696311157297823662689037894645226208583 \\
q &\equiv& 21888242871839275222246405745257275088548364400416034343698204186575808495617
\end{eqnarray}
Since $p$ is a prime number, $\{0, 1, \ldots, p - 1\}$ forms a field with addition and multiplication modulo $p$. We call this field $F_p$.

We define a set~$C_1$ with
\begin{equation}
C_1\equiv\{(X,Y)\in F_p\times F_p\mid Y^2=X^3+3\}\cup\{(0,0)\}
\end{equation}
We define a binary operation $+$ on $C_1$ with
\begin{eqnarray}\label{eq:ec-addition}
(X_1, Y_1) + (X_2, Y_2)&\equiv&\begin{cases}
(X,Y)&\text{if}\ X_1\neq X_2\\
(0,0)&\text{otherwise}
\end{cases}\\
X&\equiv&\lambda^2-X_1-X_2\\
Y&\equiv&\lambda(X_1-X)-Y_1\\
\lambda&\equiv&\frac{Y_2-Y_1}{X_2-X_1}
\end{eqnarray}

$(C_1,+)$ is known to form a group. We define the scalar multiplication $\cdot$ with
\begin{equation}\label{eq:ec-scalar-multiplication}
n\cdot P\equiv(0,0)+\underbrace{P+\cdots+P}_{n}
\end{equation}
for a natural number $n$ and a point $P$ in $C_1$.

We define $P_1$ to be a point $(1,2)$ on $C_1$. Let $G_1$ be the subgroup of $(C_1,+)$ generated by $P_1$. $G_1$ is known to be a cyclic group of order $q$. For a point $P$ in $G_1$, we define $\log_{P_1}(P)$ to be the smallest natural number $n$ satisfying $n\cdot P_1=P$. $\log_{P_1}(P)$ is at most $q-1$.

Let $F_{p^2}$ be a field $F_p[i]/(i+1)$. We define a set $C_2$ with
\begin{equation}
C_2\equiv\{(X,Y)\in F_{p^2}\times F_{p^2}\mid Y^2=X^3+3\}\cup\{(0,0)\}
\end{equation}
We define a binary operation $+$ and a scalar multiplication $\cdot$ with the same equations (\ref{eq:ec-addition}) and (\ref{eq:ec-scalar-multiplication}). $(C_2,+)$ is also known to be a group. We define $P_2$ in $C_2$ with
\begin{eqnarray}
P_2&\equiv&
(11559732032986387107991004021392285783925812861821192530917403151452391805634 \times i\\\nonumber &&+ 10857046999023057135944570762232829481370756359578518086990519993285655852781,\\\nonumber && 4082367875863433681332203403145435568316851327593401208105741076214120093531 \times i\\\nonumber &&+ 8495653923123431417604973247489272438418190587263600148770280649306958101930)
\end{eqnarray}
We define $G_2$ to be the subgroup of $(C_2,+)$ generated by $P_2$. $G_2$ is known to be a cyclic group of order $q$. For a point $P$ in $G_2$, we define $\log_{P_2}(P)$ be the smallest natural number $n$ satisfying $n\cdot P_2=P$. With this definition, $\log_{P_2}(P)$ is at most $q-1$.

\section{Signing Transactions}\label{app:signing}

Expand Down

0 comments on commit ab94a73

Please sign in to comment.