Skip to content

A wrapper, a lemmatizer and REST API implemented in Python for emMorph (Humor) Hungarian morphological analyzer

License

Notifications You must be signed in to change notification settings

ppke-nlpg/emmorphpy

Repository files navigation

Warning: This repository might not contain the newest version of the source code. The development is continued at https://github.com/dlt-rilmta/emmorphpy


emMorphPy

A wrapper and lemmatizer implemented in Python for emMorph (Humor) Hungarian morphological analyzer

Requirements

Features

  • Stemming and returning the detailed morphological analyses with the proper transducer and config file
  • Handling extra and exceptional lexicons statically and dynamically (see emmorphpy/emmorphpy.py for details)
  • Can be used through REST API (using xtsv), or from Python as a library (see usage examples below)

Install on local machine

  • Clone the repository
  • Run: sudo pip3 install -r requirements.txt
  • Use from Python

Install to Heroku

  • Register
  • Download Heroku CLI
  • Login to Heroku from the CLI
  • Create an app
  • Clone the repository
  • Add Heroku as remote origin
  • Add APT buildpack: heroku buildpacks:add --index 1 https://github.com/heroku/heroku-buildpack-apt
  • Add Python buildpack: heroku buildpacks:add --index 2 heroku/python
  • Push the repository to Heroku
  • Enjoy!

Usage

  • From browser or anyhow through the REST API:

    >>> import requests
    >>> import json
    >>> word = 'működik'
    >>> json.loads(requests.get('https://emmorph.herokuapp.com/stem/' + word).text)[word]
    [{'lemma': 'működik', 'tag': '[/V][Prs.Def.3Pl]'}, {'lemma': 'működik', 'tag': '[/V][Prs.NDef.3Sg]'}]
    >>> json.loads(requests.get('https://emmorph.herokuapp.com/analyze/' + word).text)[word]
    [{'morphana': 'működik[/V]=működ+ik[Prs.Def.3Pl]=ik'}, {'morphana': 'működik[/V]=működ+ik[Prs.NDef.3Sg]=ik'}]
    >>> json.loads(requests.get('https://emmorph.herokuapp.com/dstem/' + word).text)[word]
    [{'lemma': 'működik', 'tag': '[/V][Prs.Def.3Pl]', 'morphana': 'működik[/V]=működ+ik[Prs.Def.3Pl]=ik', 'readable': 'működik[/V]=működ + ik[Prs.Def.3Pl]', 'twolevel': 'm:m ű:ű k:k ö:ö d:d :i :k :[/V] i:i k:k :[Prs.Def.3Pl]'}, {'lemma': 'működik', 'tag': '[/V][Prs.NDef.3Sg]', 'morphana': 'működik[/V]=működ+ik[Prs.NDef.3Sg]=ik', 'readable': 'működik[/V]=működ + ik[Prs.NDef.3Sg]', 'twolevel': 'm:m ű:ű k:k ö:ö d:d :i :k :[/V] i:i k:k :[Prs.NDef.3Sg]'}]
    >>> words = '\n'.join(('form', word, 'word2', ''))  # One word per line (first line is header, trailing newline is needed!)
    >>> words_out = requests.post('https://emmorph.herokuapp.com/stem', files={'file': words}).text.split('\n')
    >>> print(words_out[1].split('\t'))
    ['működik', '[{"lemma": "működik", "tag": "[/V][Prs.Def.3Pl]"}, {"lemma": "működik", "tag": "[/V][Prs.NDef.3Sg]"}]']
    >>> words_out = requests.post('https://emmorph.herokuapp.com/analyze', files={'file': words}).text.split('\n')
    >>> print(words_out[1].split('\t'))
    ['működik', '[{"morphana": "működik[/V]=működ+ik[Prs.Def.3Pl]=ik"}, {"morphana": "működik[/V]=működ+ik[Prs.NDef.3Sg]=ik"}]']
    >>> words_out = requests.post('https://emmorph.herokuapp.com/dstem', files={'file': words}).text.split('\n')
    >>> print(words_out[1].split('\t'))
    ['működik', '[{"lemma": "működik", "tag": "[/V][Prs.Def.3Pl]", "morphana": "működik[/V]=működ+ik[Prs.Def.3Pl]=ik", "readable": "működik[/V]=működ + ik[Prs.Def.3Pl]", "twolevel": "m:m ű:ű k:k ö:ö d:d :i :k :[/V] i:i k:k :[Prs.Def.3Pl]"}, {"lemma": "működik", "tag": "[/V][Prs.NDef.3Sg]", "morphana": "működik[/V]=működ+ik[Prs.NDef.3Sg]=ik", "readable": "működik[/V]=működ + ik[Prs.NDef.3Sg]", "twolevel": "m:m ű:ű k:k ö:ö d:d :i :k :[/V] i:i k:k :[Prs.NDef.3Sg]"}]']
  • From Python:

    >>> import emmorphpy.emmorphpy as emmorph
    >>> m = emmorph.EmMorphPy()
    >>> m.stem('működik')     # Returns list of lemmatisations (stem and tag pairs)
    [('működik', '[/V][Prs.Def.3Pl]'), ('működik', '[/V][Prs.NDef.3Sg]')]
    >>> m.analyze('működik')  # Returns list of detailed analyzes (word by morphemes)
    ['működik[/V]=működ+ik[Prs.Def.3Pl]=ik', 'működik[/V]=működ+ik[Prs.NDef.3Sg]=ik']
    >>> m.dstem('működik')    # Returns list of lemmatisations with the corresponding detailed analyzes (stem, tag and detailed analyzes triples)
    [('működik', '[/V][Prs.Def.3Pl]', 'működik[/V]=működ+ik[Prs.Def.3Pl]=ik', 'működik[/V]=működ + ik[Prs.Def.3Pl]', 'm:m ű:ű k:k ö:ö d:d :i :k :[/V] i:i k:k :[Prs.Def.3Pl]'), ('működik', '[/V][Prs.NDef.3Sg]', 'működik[/V]=működ+ik[Prs.NDef.3Sg]=ik', 'működik[/V]=működ + ik[Prs.NDef.3Sg]', 'm:m ű:ű k:k ö:ö d:d :i :k :[/V] i:i k:k :[Prs.NDef.3Sg]')]
    >>> # Add new analyses to the lexicon (Not a paradigm, but a single analysis!) Format: [('STEM', 'TAG', 'DETAILED_ANALYSIS', 'HFST-OUTPUT')]
    >>> m.lexicon['Obamával'] = [('Obama', '[/N][Nom]', '', ''), ('Obam', '[/N][Nom]', '', ''), ('Obamá', '[/N][Nom]', '', '')]
    >>> # Add new exceptions to the lexicon (Exact matches will be filtered out ASAP!) Format: ('HFST-OUTPUT')
    >>> m.exceptions['almával'] = {'a:a l:l :o m:m :[/N] á:a :[Poss.3Sg] v:v a:a l:l :[Ins]'}  

License

This Python wrapper, the lemmatizer implementation is licensed under the LGPL 3.0 license. xtsv, HFST, the database and the lemmatizer configuration has their own license.

About

A wrapper, a lemmatizer and REST API implemented in Python for emMorph (Humor) Hungarian morphological analyzer

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published