v3.1 Final
This is the first major update to PyMC 3 since its initial release. Highlights of this release include:
- Gaussian Process submodule
- Much improved variational inference support that includes:
- Stein Variational Gradient Descent
- Minibatch processing
- Additional optimizers, including ADAM
- Experimental operational variational inference (OPVI)
- Full-rank ADVI
- MvNormal supports Cholesky Decomposition now for increased speed and numerical stability.
- NUTS implementation now matches current Stan implementation.
- Higher-order integrators for HMC
- Elliptical slice sampler is now available
- Added
Approximation
class and the ability to convert a sampled trace into an approximation via itsEmpirical
subclass. - Add MvGaussianRandomWalk and MvStudentTRandomWalk distributions.