Skip to content

Commit

Permalink
Add basic info of mobilenetv3
Browse files Browse the repository at this point in the history
  • Loading branch information
oke-aditya committed Sep 6, 2021
1 parent 45c4ca3 commit 2ec77af
Show file tree
Hide file tree
Showing 3 changed files with 99 additions and 1 deletion.
Binary file added images/mobilenet_v3_1.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
2 changes: 1 addition & 1 deletion pytorch_vision_mobilenet_v2.md
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@ category: researchers
image: mobilenet_v2_1.png
author: Pytorch Team
tags: [vision, scriptable]
github-link: https://github.com/pytorch/vision/blob/main/torchvision/models/mobilenet.py
github-link: https://github.com/pytorch/vision/blob/main/torchvision/models/mobilenetv2.py
github-id: pytorch/vision
featured_image_1: mobilenet_v2_1.png
featured_image_2: mobilenet_v2_2.png
Expand Down
98 changes: 98 additions & 0 deletions pytorch_vision_mobilenet_v3.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,98 @@
---
layout: hub_detail
background-class: hub-background
body-class: hub
title: MobileNet v3
summary: Highly Efficient networks optimized for speed and memory, with residual blocks
category: researchers
image: mobilenet_v3_1.png
author: Pytorch Team
tags: [vision, scriptable]
github-link: https://github.com/pytorch/vision/blob/main/torchvision/models/mobilenetv3.py
github-id: pytorch/vision
featured_image_1: mobilenet_v3_1.png
featured_image_2: no-image
accelerator: cuda-optional
order: 10
---

```python
import torch
model = torch.hub.load('pytorch/vision:v0.10.0', 'mobilenet_v3_small', pretrained=True)
# or
# model = torch.hub.load('pytorch/vision:v0.10.0', 'mobilenet_v3_large', pretrained=True)
model.eval()
```

All pre-trained models expect input images normalized in the same way,
i.e. mini-batches of 3-channel RGB images of shape `(3 x H x W)`, where `H` and `W` are expected to be at least `224`.
The images have to be loaded in to a range of `[0, 1]` and then normalized using `mean = [0.485, 0.456, 0.406]`
and `std = [0.229, 0.224, 0.225]`.

Here's a sample execution.

```python
# Download an example image from the pytorch website
import urllib
url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
try: urllib.URLopener().retrieve(url, filename)
except: urllib.request.urlretrieve(url, filename)
```

```python
# sample execution (requires torchvision)
from PIL import Image
from torchvision import transforms
input_image = Image.open(filename)
preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
input_tensor = preprocess(input_image)
input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model

# move the input and model to GPU for speed if available
if torch.cuda.is_available():
input_batch = input_batch.to('cuda')
model.to('cuda')

with torch.no_grad():
output = model(input_batch)
# Tensor of shape 1000, with confidence scores over Imagenet's 1000 classes
print(output[0])
# The output has unnormalized scores. To get probabilities, you can run a softmax on it.
probabilities = torch.nn.functional.softmax(output[0], dim=0)
print(probabilities)
```

```
# Download ImageNet labels
!wget https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt
```

```
# Read the categories
with open("imagenet_classes.txt", "r") as f:
categories = [s.strip() for s in f.readlines()]
# Show top categories per image
top5_prob, top5_catid = torch.topk(probabilities, 5)
for i in range(top5_prob.size(0)):
print(categories[top5_catid[i]], top5_prob[i].item())
```

### Model Description

The MobileNet v3 architecture is based some stuff.

| Model structure | Top-1 error | Top-5 error |
| ------------------ | ----------- | ----------- |
| mobilenet_v3_large | 25.95 | 8.66 |
| mobilenet_v3_small | 32.33 | 12.59 |


### References

- [Searching for MobileNetV3](https://arxiv.org/abs/1905.02244)
- [PyTorch Blog on Training MobileNetV3](https://pytorch.org/blog/torchvision-mobilenet-v3-implementation)

0 comments on commit 2ec77af

Please sign in to comment.