Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add support for MRPC dataset with unit tests #1712

Merged
merged 10 commits into from
May 18, 2022
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
75 changes: 75 additions & 0 deletions test/datasets/test_mrpc.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,75 @@
import os
from collections import defaultdict
from unittest.mock import patch

from parameterized import parameterized
from torchtext.datasets.mrpc import MRPC

from ..common.case_utils import TempDirMixin, zip_equal, get_random_unicode
from ..common.torchtext_test_case import TorchtextTestCase


def _get_mock_dataset(root_dir):
"""
root_dir: directory to the mocked dataset
"""
base_dir = os.path.join(root_dir, "MRPC")
os.makedirs(base_dir, exist_ok=True)

seed = 1
mocked_data = defaultdict(list)
for file_name, file_type in [("msr_paraphrase_train.txt", "train"), ("msr_paraphrase_test.txt", "test")]:
txt_file = os.path.join(base_dir, file_name)
with open(txt_file, "w", encoding="utf-8") as f:
f.write("Quality\t#1 ID\t#2 ID\t#1 String\t#2 String\n")
for i in range(5):
label = seed % 2
rand_string_1 = get_random_unicode(seed)
rand_string_2 = get_random_unicode(seed+1)
dataset_line = (label, rand_string_1, rand_string_2)
f.write(f'{label}\t{i}\t{i}\t{rand_string_1}\t{rand_string_2}\n')

# append line to correct dataset split
mocked_data[file_type].append(dataset_line)
seed += 1

print(mocked_data)
vcm2114 marked this conversation as resolved.
Show resolved Hide resolved
return mocked_data


class TestMRPC(TempDirMixin, TorchtextTestCase):
root_dir = None
samples = []

@classmethod
def setUpClass(cls):
super().setUpClass()
cls.root_dir = cls.get_base_temp_dir()
cls.samples = _get_mock_dataset(cls.root_dir)
cls.patcher = patch("torchdata.datapipes.iter.util.cacheholder._hash_check", return_value=True)
cls.patcher.start()

@classmethod
def tearDownClass(cls):
cls.patcher.stop()
super().tearDownClass()

@parameterized.expand(["train", "test"])
def test_mrpc(self, split):
dataset = MRPC(root=self.root_dir, split=split)

samples = list(dataset)
expected_samples = self.samples[split]
print(len(samples), len(expected_samples))
vcm2114 marked this conversation as resolved.
Show resolved Hide resolved
for sample, expected_sample in zip_equal(samples, expected_samples):
print(sample)
print(expected_sample)
vcm2114 marked this conversation as resolved.
Show resolved Hide resolved
self.assertEqual(sample, expected_sample)

@parameterized.expand(["train", "test"])
def test_sst2_split_argument(self, split):
dataset1 = MRPC(root=self.root_dir, split=split)
(dataset2,) = MRPC(root=self.root_dir, split=(split,))

for d1, d2 in zip_equal(dataset1, dataset2):
self.assertEqual(d1, d2)
2 changes: 2 additions & 0 deletions torchtext/datasets/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@
from .imdb import IMDB
from .iwslt2016 import IWSLT2016
from .iwslt2017 import IWSLT2017
from .mrpc import MRPC
from .multi30k import Multi30k
from .penntreebank import PennTreebank
from .sogounews import SogouNews
Expand All @@ -34,6 +35,7 @@
"IMDB": IMDB,
"IWSLT2016": IWSLT2016,
"IWSLT2017": IWSLT2017,
"MRPC": MRPC,
"Multi30k": Multi30k,
"PennTreebank": PennTreebank,
"SQuAD1": SQuAD1,
Expand Down
72 changes: 72 additions & 0 deletions torchtext/datasets/mrpc.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,72 @@
import os
import csv
from typing import Union, Tuple

from torchtext._internal.module_utils import is_module_available
from torchtext.data.datasets_utils import (
_wrap_split_argument,
_create_dataset_directory,
)

if is_module_available("torchdata"):
from torchdata.datapipes.iter import FileOpener, HttpReader, IterableWrapper


URL = {
"train": "https://dl.fbaipublicfiles.com/senteval/senteval_data/msr_paraphrase_train.txt",
"test": "https://dl.fbaipublicfiles.com/senteval/senteval_data/msr_paraphrase_test.txt",
}

MD5 = {
"train": "793daf7b6224281e75fe61c1f80afe35",
"test": "e437fdddb92535b820fe8852e2df8a49",
}

NUM_LINES = {
"train": 4076,
"test": 1725,
}


DATASET_NAME = "MRPC"


@_create_dataset_directory(dataset_name=DATASET_NAME)
@_wrap_split_argument(("train", "test"))
def MRPC(root: str, split: Union[Tuple[str], str]):
"""MRPC Dataset

For additional details refer to https://www.microsoft.com/en-us/download/details.aspx?id=52398

Number of lines per split:
- train: 4076
- test: 1725

Args:
root: Directory where the datasets are saved. Default: os.path.expanduser('~/.torchtext/cache')
split: split or splits to be returned. Can be a string or tuple of strings. Default: (`train`, `test`)

:returns: DataPipe that yields data points from MRPC dataset which consist of label, sentence1, sentence2
:rtype: (int, str, str)
"""
if not is_module_available("torchdata"):
raise ModuleNotFoundError(
"Package `torchdata` not found. Please install following instructions at `https://github.com/pytorch/data`"
)

def _filepath_fn(x):
return os.path.join(root, os.path.basename(x))

def _modify_res(x):
return (int(x[0]), x[3], x[4])

url_dp = IterableWrapper([URL[split]])
# cache data on-disk with sanity check
cache_dp = url_dp.on_disk_cache(
filepath_fn=_filepath_fn,
hash_dict={_filepath_fn(URL[split]): MD5[split]},
hash_type="md5",
)
cache_dp = HttpReader(cache_dp).end_caching(mode="wb", same_filepath_fn=True)
cache_dp = FileOpener(cache_dp, encoding="utf-8")
return cache_dp.parse_csv(skip_lines=1, delimiter="\t", quoting=csv.QUOTE_NONE).map(_modify_res)