Skip to content

automatic image inpainting (lama(with refinement) and maskdino)

License

Notifications You must be signed in to change notification settings

qwopqwop200/lama-with-maskdino

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

28 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Lama-with-MaskDINO

demo

It was inspired by Auto-LaMa.

Unlike Auto-Lama, it differs in:

  1. Use the object instance segmentation model MaskDINO instead of the object detection model DETR.
  2. Use LaMa with refiner for better results.

simple demo with gradio

webui

Environment setup

A minimum of 12 gb memory gpu is required.

  1. Download pre-trained weights MaskDINO and LaMa
  2. Put the directory like this
  .root
  ├─demo.py
  ├─ckpt
  │  ├──maskdino_swinl_50ep_300q_hid2048_3sd1_instance_maskenhanced_mask52.3ap_box59.0ap.pth
  │  └─models
  │      ├──config.yaml
  │      └─models
  │          └─best.ckpt
  └─images
       ├──buildings.png
       ├──cat.png
       └──park.png     
  1. conda environment setup
conda create --name maskdino python=3.8 -y
conda activate maskdino
conda install pytorch==1.9.0 torchvision==0.10.0 cudatoolkit=11.1 -c pytorch -c nvidia
pip install -U opencv-python

mkdir repo
git clone [email protected]:facebookresearch/detectron2.git
cd detectron2
pip install -e .
pip install git+https://github.com/cocodataset/panopticapi.git

cd ..
git clone -b quickfix/infer_demo --single-branch https://github.com/MeAmarP/MaskDINO.git
cd MaskDINO
pip install -r requirements.txt
cd maskdino/modeling/pixel_decoder/ops
python setup.py build install
cd ../../../../..

git clone https://github.com/geomagical/lama-with-refiner.git
cd lama-with-refiner
pip install -r requirements.txt 
pip install --upgrade numpy==1.23.0
cd ../..
pip install gradio
  1. Run
#localhost http://127.0.0.1:7860
python demo.py

Acknowledgments

Many thanks to these excellent opensource projects

About

automatic image inpainting (lama(with refinement) and maskdino)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages