Skip to content

Commit

Permalink
implement DepthwiseConv2dBackwardFilterKernel from tensorflow codebas…
Browse files Browse the repository at this point in the history
…e, which is over 5x faster (apache#10098)
  • Loading branch information
nihui authored and piiswrong committed Mar 16, 2018
1 parent bfabc3b commit 9293655
Show file tree
Hide file tree
Showing 2 changed files with 97 additions and 78 deletions.
85 changes: 7 additions & 78 deletions src/operator/nn/depthwise_convolution-inl.h
Original file line number Diff line number Diff line change
Expand Up @@ -79,80 +79,6 @@ class DepthwiseConvolutionOp {
}; // class DepthwiseConvolutionOp

namespace depthwise_conv {
namespace cuda {
template<typename DType, int kFilterWidth, int kFilterHeight>
__global__ void __launch_bounds__(1024, 2)
DepthwiseConv2dBackwardFilterKernel(const DepthwiseArgs args,
const DType* out_grad,
const DType* input,
DType* filter_grad) {
const int in_height = args.in_height;
const int in_width = args.in_width;
const int channel = args.in_channel;
const int filter_height = kFilterHeight > 0 ? kFilterHeight : args.filter_height;
const int filter_width = kFilterWidth > 0 ? kFilterWidth : args.filter_width;
const int stride_height = args.stride_height;
const int stride_width = args.stride_width;
const int pad_height = args.pad_height;
const int pad_width = args.pad_width;
const int out_height = args.out_height;
const int out_width = args.out_width;

const int filter_pixels = filter_width * filter_height;
const int out_pixels = out_height * out_width;
const int in_pixels = in_height * in_width;
const int batch_channel_num = channel * args.batch;

for (int b = blockIdx.x; b < batch_channel_num; b += gridDim.x) {
const int local_batch = b / channel;
const int local_channel = b % channel;
const int filter_offset_temp = local_channel * filter_pixels;
const int out_grad_offset_temp = (local_batch * channel * out_pixels) +
(local_channel * out_pixels);

// Make sure all threads enter the loop so they get to the enclosed __syncthreads()
for (int out_id = threadIdx.x;
out_id < ROUND_TO_MULTIPLE(out_pixels,
blockDim.x); out_id += blockDim.x) {
const int out_w = out_id % out_width;
const int out_h = (out_id / out_width) % out_height;
const int out_grad_offset = out_grad_offset_temp + (out_h * out_width) + (out_w);
// Set out_g to 0 if the thread would normally have not entered the loop.
const DType out_g = out_id < out_pixels ? ldg(out_grad + out_grad_offset) : DType(0);

const int in_h_start = out_h * stride_height - pad_height;
const int in_w_start = out_w * stride_width - pad_width;
CUDA_UNROLL for (int f_h = 0; f_h < filter_height; ++f_h) {
const int in_h = in_h_start + f_h;
const int input_offset_temp = (local_batch * channel * in_pixels) +
(local_channel * in_pixels) + (in_h * in_width);
const int filter_offset_h = filter_width * f_h;

CUDA_UNROLL for (int f_w = 0; f_w < filter_width; ++f_w) {
const int in_w = in_w_start + f_w;
DType partial_grad = DType(0.0f);
if (in_h >= 0 && in_h < in_height && in_w >= 0 && in_w < in_width) {
const int input_offset = input_offset_temp + in_w;
// Set partial_grad to 0 if the thread would normally not have entered the loop.
partial_grad = out_id < out_pixels ? ldg(input + input_offset) * out_g : DType(0);
}
// reduce all valid partial grad in a block
typedef cub::BlockReduce<DType, mshadow::cuda::kBaseThreadNum> BlockReduceT;
__shared__ typename BlockReduceT::TempStorage temp_storage_reduce;
DType aggregate = BlockReduceT(temp_storage_reduce).Sum(partial_grad, blockDim.x);
if (threadIdx.x == 0) {
DType* addr = filter_grad + f_w + filter_offset_h + filter_offset_temp;
atomicAdd(addr, aggregate);
}
// The presense of __syncthreads() here means all threads must enter enclosing for-loops.
__syncthreads();
} // for filter_width
} // for filter_height
} // for out_pixels
__syncthreads();
} // for batch_channel_num
}
} // namespace cuda

template<typename DType>
void DepthwiseConv2dForwardGpu(mshadow::Stream<gpu> *stream,
Expand Down Expand Up @@ -244,6 +170,7 @@ void DepthwiseConv2dBackwardFilterGpu(mshadow::Stream<gpu> *stream,
using namespace mshadow;
using namespace mshadow::expr;
using namespace tf::depthwise_conv;
using namespace tf::depthwise_conv::cuda;
Tensor<gpu, 4, DType> out_g = out_grad[conv::kOut].get<gpu, 4, DType>(stream);
Tensor<gpu, 4, DType> in_d = in_data[conv::kData].get<gpu, 4, DType>(stream);
Tensor<gpu, 4, DType> weight_grad = in_grad[conv::kWeight].get<gpu, 4, DType>(stream);
Expand All @@ -258,17 +185,19 @@ void DepthwiseConv2dBackwardFilterGpu(mshadow::Stream<gpu> *stream,
auto s = mshadow::Stream<gpu>::GetStream(stream);
int block_num = std::min(args.out_channel * args.batch, mshadow::cuda::kMaxGridNum);
if (args.filter_width == 3 && args.filter_height == 3) {
cuda::DepthwiseConv2dBackwardFilterKernel<DType, 3, 3>
DepthwiseConv2dBackwardFilterKernel<DType, 3, 3>
<<<block_num, mshadow::cuda::kBaseThreadNum, 0, s>>>(args,
out_g.dptr_,
in_d.dptr_,
weight_grad.dptr_);
weight_grad.dptr_,
num_out_grad);
} else {
cuda::DepthwiseConv2dBackwardFilterKernel<DType, -1, -1>
DepthwiseConv2dBackwardFilterKernel<DType, -1, -1>
<<<block_num, mshadow::cuda::kBaseThreadNum, 0, s>>>(args,
out_g.dptr_,
in_d.dptr_,
weight_grad.dptr_);
weight_grad.dptr_,
num_out_grad);
}
MSHADOW_CUDA_POST_KERNEL_CHECK(DepthwiseConv2dBackwardFilterKernel);
}
Expand Down
90 changes: 90 additions & 0 deletions src/operator/nn/depthwise_convolution_tf.cuh
Original file line number Diff line number Diff line change
Expand Up @@ -384,6 +384,96 @@ DepthwiseConv2dBackwardDataKernel(const DepthwiseArgs args,
}
}

// A Cuda kernel to compute the depthwise convolution backprop w.r.t. filter.
template <typename DType, int kFilterWidth, int kFilterHeight>
__global__ void __launch_bounds__(640, 2)
DepthwiseConv2dBackwardFilterKernel(const DepthwiseArgs args,
const DType* out_backprop,
const DType* input,
DType* filter_backprop,
int num_out_backprop) {
const int in_channel = args.in_channel;
const int in_height = args.in_height;
const int in_width = args.in_width;
const int filter_height = kFilterHeight > 0 ? kFilterHeight : args.filter_height;
const int filter_width = kFilterWidth > 0 ? kFilterWidth : args.filter_width;
const int stride_height = args.stride_height;
const int stride_width = args.stride_width;
const int pad_height = args.pad_height;
const int pad_width = args.pad_width;
const int out_channel = args.out_channel;
const int out_height = args.out_height;
const int out_width = args.out_width;

CUDA_KERNEL_LOOP(thread_id, num_out_backprop) {
// Compute the indexes of this thread in the output.
const int out_w = thread_id % out_width;
const int out_h = (thread_id / out_width) % out_height;
const int out_c = (thread_id / out_width / out_height) % out_channel;
const int out_b = thread_id / out_width / out_height / out_channel;
const int in_c = out_c;

// Decide if all input is valid, if yes, we can skip the boundary checks
// for each input.
const int in_row_start = out_h * stride_height - pad_height;
const int in_col_start = out_w * stride_width - pad_width;
const int in_row_end = in_row_start + filter_height;
const int in_col_end = in_col_start + filter_width;

const int out_backprop_offset =
(out_b * out_channel * out_height * out_width) +
(out_c * out_height * out_width) + (out_h * out_width) +
(out_w);

const DType out_bp = ldg(out_backprop + out_backprop_offset);
if (in_row_start >= 0 && in_col_start >= 0 &&
in_row_end < in_height && in_col_end < in_width) {
CUDA_UNROLL for (int f_h = 0; f_h < filter_height; ++f_h) {
const int in_row = in_row_start + f_h;
// Avoid repeated computation.
const int input_offset_temp =
(out_b * in_channel * in_height * in_width) +
(in_c * in_height * in_width) + (in_row * in_width);

CUDA_UNROLL for (int f_w = 0; f_w < filter_width; ++f_w) {
const int in_col = in_col_start + f_w;
const int input_offset = input_offset_temp + in_col;
DType partial_sum = ldg(input + input_offset) * out_bp;
DType* addr = filter_backprop + (in_c + in_channel * (f_w + filter_width * f_h));
atomicAdd(addr, partial_sum);
}
}
} else {
CUDA_UNROLL for (int f_h = 0; f_h < filter_height; ++f_h) {
const int in_row = in_row_start + f_h;
// Avoid repeated computation.
const int input_offset_temp =
(out_b * in_channel * in_height * in_width) +
(in_c * in_height * in_width) + (in_row * in_width);
CUDA_UNROLL for (int f_w = 0; f_w < filter_width; ++f_w) {
const int in_col = in_col_start + f_w;
const int addr_temp = filter_width * f_h;

if (in_row >= 0 && in_row < in_height && in_col >= 0 && in_col < in_width) {
const int input_offset = input_offset_temp + in_col;
DType partial_sum = ldg(input + input_offset) * out_bp;
DType* addr = filter_backprop + (in_c + in_channel * (f_w + addr_temp));
// Potentially many threads can add to the same address so we have
// to use atomic add here.
// TODO(jmchen): If atomic add turns out to be slow, we can:
// 1. allocate multiple buffers for the gradients (one for each
// example in a batch, for example). This can reduce the
// contention on the destination; 2. Have each thread compute one
// gradient for an element in the filters. This should work well
// when the input depth is big and filter size is not too small.
atomicAdd(addr, partial_sum);
}
}
}
}
}
}

// CUDA kernel to compute the depthwise convolution backward w.r.t. filter in
// NCHW format, tailored for small images up to 32x32. Only use this kernel if
// CanLaunchDepthwiseConv2dGPUSmall(args) returns true.
Expand Down

0 comments on commit 9293655

Please sign in to comment.