Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Can derive hash analysis #887

Merged
merged 12 commits into from
Aug 10, 2017
19 changes: 17 additions & 2 deletions src/codegen/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@ use ir::comp::{Base, BitfieldUnit, Bitfield, CompInfo, CompKind, Field,
FieldData, FieldMethods, Method, MethodKind};
use ir::comment;
use ir::context::{BindgenContext, ItemId};
use ir::derive::{CanDeriveCopy, CanDeriveDebug, CanDeriveDefault};
use ir::derive::{CanDeriveCopy, CanDeriveDebug, CanDeriveDefault, CanDeriveHash};
use ir::dot;
use ir::enum_ty::{Enum, EnumVariant, EnumVariantValue};
use ir::function::{Abi, Function, FunctionSig};
Expand Down Expand Up @@ -1440,6 +1440,10 @@ impl CodeGenerator for CompInfo {
}
}

if item.can_derive_hash(ctx) {
derives.push("Hash");
}

if !derives.is_empty() {
attributes.push(attributes::derives(&derives))
}
Expand Down Expand Up @@ -3394,12 +3398,23 @@ mod utils {
)
.unwrap();

// The actual memory of the filed will be hashed, so that's why these
// field doesn't do anything with the hash.
let union_field_hash_impl = quote_item!(&ctx.ext_cx(),
impl<T> ::$prefix::hash::Hash for __BindgenUnionField<T> {
fn hash<H: ::$prefix::hash::Hasher>(&self, _state: &mut H) {
}
}
)
.unwrap();

let items = vec![union_field_decl,
union_field_impl,
union_field_default_impl,
union_field_clone_impl,
union_field_copy_impl,
union_field_debug_impl];
union_field_debug_impl,
union_field_hash_impl];

let old_items = mem::replace(result, items);
result.extend(old_items.into_iter());
Expand Down
337 changes: 337 additions & 0 deletions src/ir/analysis/derive_hash.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,337 @@
//! Determining which types for which we can emit `#[derive(Hash)]`.

use super::{ConstrainResult, MonotoneFramework, generate_dependencies};
use std::collections::HashSet;
use std::collections::HashMap;
use ir::context::{BindgenContext, ItemId};
use ir::item::IsOpaque;
use ir::traversal::EdgeKind;
use ir::ty::RUST_DERIVE_IN_ARRAY_LIMIT;
use ir::ty::TypeKind;
use ir::comp::Field;
use ir::comp::FieldMethods;
use ir::derive::CanTriviallyDeriveHash;
use ir::comp::CompKind;

/// An analysis that finds for each IR item whether hash cannot be derived.
///
/// We use the monotone constraint function `cannot_derive_hash`, defined as
/// follows:
///
/// * If T is Opaque and layout of the type is known, get this layout as opaque
/// type and check whether it can be derived using trivial checks.
/// * If T is Array type, hash cannot be derived if the length of the array is
/// larger than the limit or the type of data the array contains cannot derive
/// hash.
/// * If T is a type alias, a templated alias or an indirection to another type,
/// hash cannot be derived if the type T refers to cannot be derived hash.
/// * If T is a compound type, hash cannot be derived if any of its base member
/// or field cannot be derived hash.
/// * If T is a pointer, T cannot be derived hash if T is a function pointer
/// and the function signature cannot be derived hash.
/// * If T is an instantiation of an abstract template definition, T cannot be
/// derived hash if any of the template arguments or template definition
/// cannot derive hash.
#[derive(Debug, Clone)]
pub struct CannotDeriveHash<'ctx, 'gen>
where 'gen: 'ctx
{
ctx: &'ctx BindgenContext<'gen>,

// The incremental result of this analysis's computation. Everything in this
// set cannot derive hash.
cannot_derive_hash: HashSet<ItemId>,

// Dependencies saying that if a key ItemId has been inserted into the
// `cannot_derive_hash` set, then each of the ids in Vec<ItemId> need to be
// considered again.
//
// This is a subset of the natural IR graph with reversed edges, where we
// only include the edges from the IR graph that can affect whether a type
// can derive hash or not.
dependencies: HashMap<ItemId, Vec<ItemId>>,
}

impl<'ctx, 'gen> CannotDeriveHash<'ctx, 'gen> {
fn consider_edge(kind: EdgeKind) -> bool {
match kind {
// These are the only edges that can affect whether a type can derive
// hash or not.
EdgeKind::BaseMember |
EdgeKind::Field |
EdgeKind::TypeReference |
EdgeKind::VarType |
EdgeKind::TemplateArgument |
EdgeKind::TemplateDeclaration |
EdgeKind::TemplateParameterDefinition => true,

EdgeKind::Constructor |
EdgeKind::Destructor |
EdgeKind::FunctionReturn |
EdgeKind::FunctionParameter |
EdgeKind::InnerType |
EdgeKind::InnerVar |
EdgeKind::Method => false,
EdgeKind::Generic => false,
}
}

fn insert(&mut self, id: ItemId) -> ConstrainResult {
trace!("inserting {:?} into the cannot_derive_hash set", id);

let was_not_already_in_set = self.cannot_derive_hash.insert(id);
assert!(
was_not_already_in_set,
"We shouldn't try and insert {:?} twice because if it was \
already in the set, `constrain` should have exited early.",
id
);

ConstrainResult::Changed
}
}

impl<'ctx, 'gen> MonotoneFramework for CannotDeriveHash<'ctx, 'gen> {
type Node = ItemId;
type Extra = &'ctx BindgenContext<'gen>;
type Output = HashSet<ItemId>;

fn new(ctx: &'ctx BindgenContext<'gen>) -> CannotDeriveHash<'ctx, 'gen> {
let cannot_derive_hash = HashSet::new();
let dependencies = generate_dependencies(ctx, Self::consider_edge);

CannotDeriveHash {
ctx,
cannot_derive_hash,
dependencies,
}
}

fn initial_worklist(&self) -> Vec<ItemId> {
self.ctx.whitelisted_items().iter().cloned().collect()
}

fn constrain(&mut self, id: ItemId) -> ConstrainResult {
trace!("constrain: {:?}", id);

if self.cannot_derive_hash.contains(&id) {
trace!(" already know it cannot derive Hash");
return ConstrainResult::Same;
}

let item = self.ctx.resolve_item(id);
let ty = match item.as_type() {
Some(ty) => ty,
None => {
trace!(" not a type; ignoring");
return ConstrainResult::Same;
}
};

if item.is_opaque(self.ctx, &()) {
let layout_can_derive = ty.layout(self.ctx).map_or(true, |l| {
l.opaque().can_trivially_derive_hash()
});
return if layout_can_derive {
trace!(" we can trivially derive Hash for the layout");
ConstrainResult::Same
} else {
trace!(" we cannot derive Hash for the layout");
self.insert(id)
};
}

if ty.layout(self.ctx).map_or(false, |l| l.align > RUST_DERIVE_IN_ARRAY_LIMIT) {
// We have to be conservative: the struct *could* have enough
// padding that we emit an array that is longer than
// `RUST_DERIVE_IN_ARRAY_LIMIT`. If we moved padding calculations
// into the IR and computed them before this analysis, then we could
// be precise rather than conservative here.
return self.insert(id);
}

match *ty.kind() {
// Handle the simple cases. These can derive hash without further
// information.
TypeKind::Void |
TypeKind::NullPtr |
TypeKind::Int(..) |
TypeKind::Enum(..) |
TypeKind::Named |
TypeKind::UnresolvedTypeRef(..) |
TypeKind::BlockPointer |
TypeKind::Reference(..) |
TypeKind::ObjCInterface(..) |
TypeKind::ObjCId |
TypeKind::ObjCSel => {
trace!(" simple type that can always derive Hash");
ConstrainResult::Same
}

TypeKind::Complex(..) |
TypeKind::Float(..) => {
trace!(" float cannot derive Hash");
self.insert(id)
}

TypeKind::Array(t, len) => {
if self.cannot_derive_hash.contains(&t) {
trace!(" arrays of T for which we cannot derive Hash \
also cannot derive Hash");
return self.insert(id);
}

if len <= RUST_DERIVE_IN_ARRAY_LIMIT {
trace!(" array is small enough to derive Hash");
ConstrainResult::Same
} else {
trace!(" array is too large to derive Hash");
self.insert(id)
}
}

TypeKind::Pointer(inner) => {
let inner_type = self.ctx.resolve_type(inner).canonical_type(self.ctx);
if let TypeKind::Function(ref sig) = *inner_type.kind() {
if !sig.can_trivially_derive_hash() {
trace!(" function pointer that can't trivially derive Hash");
return self.insert(id);
}
}
trace!(" pointers can derive Hash");
ConstrainResult::Same
}

TypeKind::Function(ref sig) => {
if !sig.can_trivially_derive_hash() {
trace!(" function that can't trivially derive Hash");
return self.insert(id);
}
trace!(" function can derive Hash");
ConstrainResult::Same
}

TypeKind::ResolvedTypeRef(t) |
TypeKind::TemplateAlias(t, _) |
TypeKind::Alias(t) => {
if self.cannot_derive_hash.contains(&t) {
trace!(" aliases and type refs to T which cannot derive \
Hash also cannot derive Hash");
self.insert(id)
} else {
trace!(" aliases and type refs to T which can derive \
Hash can also derive Hash");
ConstrainResult::Same
}
}

TypeKind::Comp(ref info) => {
assert!(
!info.has_non_type_template_params(),
"The early ty.is_opaque check should have handled this case"
);

if info.kind() == CompKind::Union {
if self.ctx.options().unstable_rust {
trace!(" cannot derive Hash for Rust unions");
return self.insert(id);
}

if ty.layout(self.ctx)
.map_or(true,
|l| l.opaque().can_trivially_derive_hash()) {
trace!(" union layout can trivially derive Hash");
return ConstrainResult::Same;
} else {
trace!(" union layout cannot derive Hash");
return self.insert(id);
}
}

let bases_cannot_derive = info.base_members()
.iter()
.any(|base| !self.ctx.whitelisted_items().contains(&base.ty) ||
self.cannot_derive_hash.contains(&base.ty));
if bases_cannot_derive {
trace!(" base members cannot derive Hash, so we can't \
either");
return self.insert(id);
}

let fields_cannot_derive = info.fields()
.iter()
.any(|f| {
match *f {
Field::DataMember(ref data) => {
!self.ctx.whitelisted_items().contains(&data.ty()) ||
self.cannot_derive_hash.contains(&data.ty())
}
Field::Bitfields(ref bfu) => {
bfu.bitfields()
.iter().any(|b| {
!self.ctx.whitelisted_items().contains(&b.ty()) ||
self.cannot_derive_hash.contains(&b.ty())
})
}
}
});
if fields_cannot_derive {
trace!(" fields cannot derive Hash, so we can't either");
return self.insert(id);
}

trace!(" comp can derive Hash");
ConstrainResult::Same
}

TypeKind::TemplateInstantiation(ref template) => {
let args_cannot_derive = template.template_arguments()
.iter()
.any(|arg| self.cannot_derive_hash.contains(&arg));
if args_cannot_derive {
trace!(" template args cannot derive Hash, so \
insantiation can't either");
return self.insert(id);
}

assert!(
!template.template_definition().is_opaque(self.ctx, &()),
"The early ty.is_opaque check should have handled this case"
);
let def_cannot_derive = self.cannot_derive_hash
.contains(&template.template_definition());
if def_cannot_derive {
trace!(" template definition cannot derive Hash, so \
insantiation can't either");
return self.insert(id);
}

trace!(" template instantiation can derive Hash");
ConstrainResult::Same
}

TypeKind::Opaque => {
unreachable!(
"The early ty.is_opaque check should have handled this case"
)
}
}
}

fn each_depending_on<F>(&self, id: ItemId, mut f: F)
where F: FnMut(ItemId),
{
if let Some(edges) = self.dependencies.get(&id) {
for item in edges {
trace!("enqueue {:?} into worklist", item);
f(*item);
}
}
}
}

impl<'ctx, 'gen> From<CannotDeriveHash<'ctx, 'gen>> for HashSet<ItemId> {
fn from(analysis: CannotDeriveHash<'ctx, 'gen>) -> Self {
analysis.cannot_derive_hash
}
}
2 changes: 2 additions & 0 deletions src/ir/analysis/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -51,6 +51,8 @@ mod derive_copy;
pub use self::derive_copy::CannotDeriveCopy;
mod has_type_param_in_array;
pub use self::has_type_param_in_array::HasTypeParameterInArray;
mod derive_hash;
pub use self::derive_hash::CannotDeriveHash;

use ir::context::{BindgenContext, ItemId};
use ir::traversal::{EdgeKind, Trace};
Expand Down
Loading