Skip to content

Commit

Permalink
Introduce adjust_for_rust_abi in rustc_target
Browse files Browse the repository at this point in the history
  • Loading branch information
SpriteOvO committed Oct 20, 2024
1 parent a2a1206 commit 85f787e
Show file tree
Hide file tree
Showing 3 changed files with 161 additions and 138 deletions.
115 changes: 114 additions & 1 deletion compiler/rustc_target/src/callconv/mod.rs
Original file line number Diff line number Diff line change
@@ -1,11 +1,14 @@
use std::fmt;
use std::str::FromStr;
use std::{fmt, iter};

use rustc_abi::AddressSpace;
use rustc_abi::Primitive::Pointer;
pub use rustc_abi::{Reg, RegKind};
use rustc_macros::HashStable_Generic;
use rustc_span::Symbol;

use crate::abi::{self, Abi, Align, HasDataLayout, Size, TyAbiInterface, TyAndLayout};
use crate::spec::abi::Abi as SpecAbi;
use crate::spec::{self, HasTargetSpec, HasWasmCAbiOpt, WasmCAbi};

mod aarch64;
Expand Down Expand Up @@ -716,6 +719,116 @@ impl<'a, Ty> FnAbi<'a, Ty> {

Ok(())
}

pub fn adjust_for_rust_abi<C>(&mut self, cx: &C, abi: SpecAbi)
where
Ty: TyAbiInterface<'a, C> + Copy,
C: HasDataLayout + HasTargetSpec,
{
let spec = cx.target_spec();
match &spec.arch[..] {
"x86" => x86::compute_rust_abi_info(cx, self, abi),
_ => {}
};

for (arg_idx, arg) in self
.args
.iter_mut()
.enumerate()
.map(|(idx, arg)| (Some(idx), arg))
.chain(iter::once((None, &mut self.ret)))
{
if arg.is_ignore() {
continue;
}

if arg_idx.is_none() && arg.layout.size > Pointer(AddressSpace::DATA).size(cx) * 2 {
// Return values larger than 2 registers using a return area
// pointer. LLVM and Cranelift disagree about how to return
// values that don't fit in the registers designated for return
// values. LLVM will force the entire return value to be passed
// by return area pointer, while Cranelift will look at each IR level
// return value independently and decide to pass it in a
// register or not, which would result in the return value
// being passed partially in registers and partially through a
// return area pointer.
//
// While Cranelift may need to be fixed as the LLVM behavior is
// generally more correct with respect to the surface language,
// forcing this behavior in rustc itself makes it easier for
// other backends to conform to the Rust ABI and for the C ABI
// rustc already handles this behavior anyway.
//
// In addition LLVM's decision to pass the return value in
// registers or using a return area pointer depends on how
// exactly the return type is lowered to an LLVM IR type. For
// example `Option<u128>` can be lowered as `{ i128, i128 }`
// in which case the x86_64 backend would use a return area
// pointer, or it could be passed as `{ i32, i128 }` in which
// case the x86_64 backend would pass it in registers by taking
// advantage of an LLVM ABI extension that allows using 3
// registers for the x86_64 sysv call conv rather than the
// officially specified 2 registers.
//
// FIXME: Technically we should look at the amount of available
// return registers rather than guessing that there are 2
// registers for return values. In practice only a couple of
// architectures have less than 2 return registers. None of
// which supported by Cranelift.
//
// NOTE: This adjustment is only necessary for the Rust ABI as
// for other ABI's the calling convention implementations in
// rustc_target already ensure any return value which doesn't
// fit in the available amount of return registers is passed in
// the right way for the current target.
arg.make_indirect();
continue;
}

match arg.layout.abi {
Abi::Aggregate { .. } => {}

// This is a fun case! The gist of what this is doing is
// that we want callers and callees to always agree on the
// ABI of how they pass SIMD arguments. If we were to *not*
// make these arguments indirect then they'd be immediates
// in LLVM, which means that they'd used whatever the
// appropriate ABI is for the callee and the caller. That
// means, for example, if the caller doesn't have AVX
// enabled but the callee does, then passing an AVX argument
// across this boundary would cause corrupt data to show up.
//
// This problem is fixed by unconditionally passing SIMD
// arguments through memory between callers and callees
// which should get them all to agree on ABI regardless of
// target feature sets. Some more information about this
// issue can be found in #44367.
//
// Note that the intrinsic ABI is exempt here as
// that's how we connect up to LLVM and it's unstable
// anyway, we control all calls to it in libstd.
Abi::Vector { .. } if abi != SpecAbi::RustIntrinsic && spec.simd_types_indirect => {
arg.make_indirect();
continue;
}

_ => continue,
}
// Compute `Aggregate` ABI.

let is_indirect_not_on_stack =
matches!(arg.mode, PassMode::Indirect { on_stack: false, .. });
assert!(is_indirect_not_on_stack);

let size = arg.layout.size;
if !arg.layout.is_unsized() && size <= Pointer(AddressSpace::DATA).size(cx) {
// We want to pass small aggregates as immediates, but using
// an LLVM aggregate type for this leads to bad optimizations,
// so we pick an appropriately sized integer type instead.
arg.cast_to(Reg { kind: RegKind::Integer, size });
}
}
}
}

impl FromStr for Conv {
Expand Down
39 changes: 39 additions & 0 deletions compiler/rustc_target/src/callconv/x86.rs
Original file line number Diff line number Diff line change
@@ -1,6 +1,10 @@
use rustc_abi::Float::*;
use rustc_abi::Primitive::Float;

use crate::abi::call::{ArgAttribute, FnAbi, PassMode, Reg, RegKind};
use crate::abi::{Abi, Align, HasDataLayout, TyAbiInterface, TyAndLayout};
use crate::spec::HasTargetSpec;
use crate::spec::abi::Abi as SpecAbi;

#[derive(PartialEq)]
pub(crate) enum Flavor {
Expand Down Expand Up @@ -183,3 +187,38 @@ where
}
}
}

pub(crate) fn compute_rust_abi_info<'a, Ty, C>(_cx: &C, fn_abi: &mut FnAbi<'a, Ty>, abi: SpecAbi)
where
Ty: TyAbiInterface<'a, C> + Copy,
C: HasDataLayout + HasTargetSpec,
{
// Avoid returning floats in x87 registers on x86 as loading and storing from x87
// registers will quiet signalling NaNs.
if !fn_abi.ret.is_ignore()
// Intrinsics themselves are not actual "real" functions, so theres no need to change their ABIs.
&& abi != SpecAbi::RustIntrinsic
{
match fn_abi.ret.layout.abi {
// Handle similar to the way arguments with an `Abi::Aggregate` abi are handled
// below, by returning arguments up to the size of a pointer (32 bits on x86)
// cast to an appropriately sized integer.
Abi::Scalar(s) if s.primitive() == Float(F32) => {
// Same size as a pointer, return in a register.
fn_abi.ret.cast_to(Reg::i32());
}
Abi::Scalar(s) if s.primitive() == Float(F64) => {
// Larger than a pointer, return indirectly.
fn_abi.ret.make_indirect();
}
Abi::ScalarPair(s1, s2)
if matches!(s1.primitive(), Float(F32 | F64))
|| matches!(s2.primitive(), Float(F32 | F64)) =>
{
// Larger than a pointer, return indirectly.
fn_abi.ret.make_indirect();
}
_ => {}
};
}
}
145 changes: 8 additions & 137 deletions compiler/rustc_ty_utils/src/abi.rs
Original file line number Diff line number Diff line change
@@ -1,8 +1,7 @@
use std::iter;

use rustc_abi::Float::*;
use rustc_abi::Primitive::{Float, Pointer};
use rustc_abi::{Abi, AddressSpace, PointerKind, Scalar, Size};
use rustc_abi::Primitive::Pointer;
use rustc_abi::{Abi, PointerKind, Scalar, Size};
use rustc_hir as hir;
use rustc_hir::lang_items::LangItem;
use rustc_middle::bug;
Expand All @@ -14,8 +13,7 @@ use rustc_middle::ty::{self, InstanceKind, Ty, TyCtxt};
use rustc_session::config::OptLevel;
use rustc_span::def_id::DefId;
use rustc_target::abi::call::{
ArgAbi, ArgAttribute, ArgAttributes, ArgExtension, Conv, FnAbi, PassMode, Reg, RegKind,
RiscvInterruptKind,
ArgAbi, ArgAttribute, ArgAttributes, ArgExtension, Conv, FnAbi, PassMode, RiscvInterruptKind,
};
use rustc_target::spec::abi::Abi as SpecAbi;
use tracing::debug;
Expand Down Expand Up @@ -679,6 +677,8 @@ fn fn_abi_adjust_for_abi<'tcx>(
let tcx = cx.tcx();

if abi == SpecAbi::Rust || abi == SpecAbi::RustCall || abi == SpecAbi::RustIntrinsic {
fn_abi.adjust_for_rust_abi(cx, abi);

// Look up the deduced parameter attributes for this function, if we have its def ID and
// we're optimizing in non-incremental mode. We'll tag its parameters with those attributes
// as appropriate.
Expand All @@ -689,141 +689,17 @@ fn fn_abi_adjust_for_abi<'tcx>(
&[]
};

let fixup = |arg: &mut ArgAbi<'tcx, Ty<'tcx>>, arg_idx: Option<usize>| {
for (arg_idx, arg) in fn_abi.args.iter_mut().enumerate() {
if arg.is_ignore() {
return;
}

// Avoid returning floats in x87 registers on x86 as loading and storing from x87
// registers will quiet signalling NaNs.
if tcx.sess.target.arch == "x86"
&& arg_idx.is_none()
// Intrinsics themselves are not actual "real" functions, so theres no need to
// change their ABIs.
&& abi != SpecAbi::RustIntrinsic
{
match arg.layout.abi {
// Handle similar to the way arguments with an `Abi::Aggregate` abi are handled
// below, by returning arguments up to the size of a pointer (32 bits on x86)
// cast to an appropriately sized integer.
Abi::Scalar(s) if s.primitive() == Float(F32) => {
// Same size as a pointer, return in a register.
arg.cast_to(Reg::i32());
return;
}
Abi::Scalar(s) if s.primitive() == Float(F64) => {
// Larger than a pointer, return indirectly.
arg.make_indirect();
return;
}
Abi::ScalarPair(s1, s2)
if matches!(s1.primitive(), Float(F32 | F64))
|| matches!(s2.primitive(), Float(F32 | F64)) =>
{
// Larger than a pointer, return indirectly.
arg.make_indirect();
return;
}
_ => {}
};
}

if arg_idx.is_none() && arg.layout.size > Pointer(AddressSpace::DATA).size(cx) * 2 {
// Return values larger than 2 registers using a return area
// pointer. LLVM and Cranelift disagree about how to return
// values that don't fit in the registers designated for return
// values. LLVM will force the entire return value to be passed
// by return area pointer, while Cranelift will look at each IR level
// return value independently and decide to pass it in a
// register or not, which would result in the return value
// being passed partially in registers and partially through a
// return area pointer.
//
// While Cranelift may need to be fixed as the LLVM behavior is
// generally more correct with respect to the surface language,
// forcing this behavior in rustc itself makes it easier for
// other backends to conform to the Rust ABI and for the C ABI
// rustc already handles this behavior anyway.
//
// In addition LLVM's decision to pass the return value in
// registers or using a return area pointer depends on how
// exactly the return type is lowered to an LLVM IR type. For
// example `Option<u128>` can be lowered as `{ i128, i128 }`
// in which case the x86_64 backend would use a return area
// pointer, or it could be passed as `{ i32, i128 }` in which
// case the x86_64 backend would pass it in registers by taking
// advantage of an LLVM ABI extension that allows using 3
// registers for the x86_64 sysv call conv rather than the
// officially specified 2 registers.
//
// FIXME: Technically we should look at the amount of available
// return registers rather than guessing that there are 2
// registers for return values. In practice only a couple of
// architectures have less than 2 return registers. None of
// which supported by Cranelift.
//
// NOTE: This adjustment is only necessary for the Rust ABI as
// for other ABI's the calling convention implementations in
// rustc_target already ensure any return value which doesn't
// fit in the available amount of return registers is passed in
// the right way for the current target.
arg.make_indirect();
return;
}

match arg.layout.abi {
Abi::Aggregate { .. } => {}

// This is a fun case! The gist of what this is doing is
// that we want callers and callees to always agree on the
// ABI of how they pass SIMD arguments. If we were to *not*
// make these arguments indirect then they'd be immediates
// in LLVM, which means that they'd used whatever the
// appropriate ABI is for the callee and the caller. That
// means, for example, if the caller doesn't have AVX
// enabled but the callee does, then passing an AVX argument
// across this boundary would cause corrupt data to show up.
//
// This problem is fixed by unconditionally passing SIMD
// arguments through memory between callers and callees
// which should get them all to agree on ABI regardless of
// target feature sets. Some more information about this
// issue can be found in #44367.
//
// Note that the intrinsic ABI is exempt here as
// that's how we connect up to LLVM and it's unstable
// anyway, we control all calls to it in libstd.
Abi::Vector { .. }
if abi != SpecAbi::RustIntrinsic && tcx.sess.target.simd_types_indirect =>
{
arg.make_indirect();
return;
}

_ => return,
}
// Compute `Aggregate` ABI.

let is_indirect_not_on_stack =
matches!(arg.mode, PassMode::Indirect { on_stack: false, .. });
assert!(is_indirect_not_on_stack, "{:?}", arg);

let size = arg.layout.size;
if !arg.layout.is_unsized() && size <= Pointer(AddressSpace::DATA).size(cx) {
// We want to pass small aggregates as immediates, but using
// an LLVM aggregate type for this leads to bad optimizations,
// so we pick an appropriately sized integer type instead.
arg.cast_to(Reg { kind: RegKind::Integer, size });
continue;
}

// If we deduced that this parameter was read-only, add that to the attribute list now.
//
// The `readonly` parameter only applies to pointers, so we can only do this if the
// argument was passed indirectly. (If the argument is passed directly, it's an SSA
// value, so it's implicitly immutable.)
if let (Some(arg_idx), &mut PassMode::Indirect { ref mut attrs, .. }) =
(arg_idx, &mut arg.mode)
{
if let &mut PassMode::Indirect { ref mut attrs, .. } = &mut arg.mode {
// The `deduced_param_attrs` list could be empty if this is a type of function
// we can't deduce any parameters for, so make sure the argument index is in
// bounds.
Expand All @@ -834,11 +710,6 @@ fn fn_abi_adjust_for_abi<'tcx>(
}
}
}
};

fixup(&mut fn_abi.ret, None);
for (arg_idx, arg) in fn_abi.args.iter_mut().enumerate() {
fixup(arg, Some(arg_idx));
}
} else {
fn_abi
Expand Down

0 comments on commit 85f787e

Please sign in to comment.