Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add documentation for anonymous pipe module #133986

Merged
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
140 changes: 135 additions & 5 deletions library/std/src/pipe.rs
Original file line number Diff line number Diff line change
@@ -1,20 +1,66 @@
//! Module for anonymous pipe
//! A cross-platform anonymous pipe.
//!
//! ```
//! #![feature(anonymous_pipe)]
//! This module provides support for anonymous OS pipes, like [pipe] on Linux or [CreatePipe] on
//! Windows.
//!
//! # Behavior
//!
//! A pipe is a synchronous, unidirectional data channel between two or more processes, like an
//! interprocess [`mpsc`](crate::sync::mpsc) provided by the OS. In particular:
//!
//! * A read on a [`PipeReader`] blocks until the pipe is non-empty.
//! * A write on a [`PipeWriter`] blocks when the pipe is full.
//! * When all copies of a [`PipeWriter`] are closed, a read on the corresponding [`PipeReader`]
//! returns EOF.
//! * [`PipeReader`] can be shared, but only one process will consume the data in the pipe.
//!
//! # Capacity
//!
//! Pipe capacity is platform dependent. To quote the Linux [man page]:
//!
//! > Different implementations have different limits for the pipe capacity. Applications should
//! > not rely on a particular capacity: an application should be designed so that a reading process
//! > consumes data as soon as it is available, so that a writing process does not remain blocked.
//!
//! # Examples
//!
//! ```no_run
//! #![feature(anonymous_pipe)]
//! # #[cfg(miri)] fn main() {}
//! # #[cfg(not(miri))]
//! # fn main() -> std::io::Result<()> {
//! let (reader, writer) = std::pipe::pipe()?;
//! # use std::process::Command;
//! # use std::io::{Read, Write};
//! let (ping_rx, mut ping_tx) = std::pipe::pipe()?;
//! let (mut pong_rx, pong_tx) = std::pipe::pipe()?;
//!
//! // Spawn a process that echoes its input.
//! let mut echo_server = Command::new("cat").stdin(ping_rx).stdout(pong_tx).spawn()?;
//!
//! ping_tx.write_all(b"hello")?;
//! // Close to unblock echo_server's reader.
//! drop(ping_tx);
//!
//! let mut buf = String::new();
//! // Block until echo_server's writer is closed.
//! pong_rx.read_to_string(&mut buf)?;
//! assert_eq!(&buf, "hello");
//!
//! echo_server.wait()?;
//! # Ok(())
//! # }
//! ```

//! [pipe]: https://man7.org/linux/man-pages/man2/pipe.2.html
//! [CreatePipe]: https://learn.microsoft.com/en-us/windows/win32/api/namedpipeapi/nf-namedpipeapi-createpipe
//! [man page]: https://man7.org/linux/man-pages/man7/pipe.7.html
use crate::io;
use crate::sys::anonymous_pipe::{AnonPipe, pipe as pipe_inner};

/// Create anonymous pipe that is close-on-exec and blocking.
///
/// # Examples
///
/// See the [module-level](crate::pipe) documentation for examples.
#[unstable(feature = "anonymous_pipe", issue = "127154")]
#[inline]
pub fn pipe() -> io::Result<(PipeReader, PipeWriter)> {
Expand All @@ -33,6 +79,58 @@ pub struct PipeWriter(pub(crate) AnonPipe);

impl PipeReader {
/// Create a new [`PipeReader`] instance that shares the same underlying file description.
///
/// # Examples
///
/// ```no_run
/// #![feature(anonymous_pipe)]
/// # #[cfg(miri)] fn main() {}
/// # #[cfg(not(miri))]
/// # fn main() -> std::io::Result<()> {
/// # use std::fs;
/// # use std::io::Write;
/// # use std::process::Command;
/// const NUM_SLOT: u8 = 2;
/// const NUM_PROC: u8 = 5;
/// const OUTPUT: &str = "work.txt";
///
/// let mut jobs = vec![];
/// let (reader, mut writer) = std::pipe::pipe()?;
///
/// // Write NUM_SLOT characters the the pipe.
/// writer.write_all(&[b'|'; NUM_SLOT as usize])?;
///
/// // Spawn several processes that read a character from the pipe, do some work, then
/// // write back to the pipe. When the pipe is empty, the processes block, so only
/// // NUM_SLOT processes can be working at any given time.
/// for _ in 0..NUM_PROC {
/// jobs.push(
/// Command::new("bash")
/// .args(["-c",
/// &format!(
/// "read -n 1\n\
/// echo -n 'x' >> '{OUTPUT}'\n\
/// echo -n '|'",
/// ),
/// ])
/// .stdin(reader.try_clone()?)
/// .stdout(writer.try_clone()?)
/// .spawn()?,
/// );
/// }
///
/// // Wait for all jobs to finish.
/// for mut job in jobs {
/// job.wait()?;
/// }
///
/// // Check our work and clean up.
/// let xs = fs::read_to_string(OUTPUT)?;
/// fs::remove_file(OUTPUT)?;
/// assert_eq!(xs, "x".repeat(NUM_PROC.into()));
/// # Ok(())
/// # }
/// ```
#[unstable(feature = "anonymous_pipe", issue = "127154")]
pub fn try_clone(&self) -> io::Result<Self> {
self.0.try_clone().map(Self)
Expand All @@ -41,6 +139,38 @@ impl PipeReader {

impl PipeWriter {
/// Create a new [`PipeWriter`] instance that shares the same underlying file description.
///
/// # Examples
///
/// ```no_run
/// #![feature(anonymous_pipe)]
/// # #[cfg(miri)] fn main() {}
/// # #[cfg(not(miri))]
/// # fn main() -> std::io::Result<()> {
/// # use std::process::Command;
/// # use std::io::Read;
/// let (mut reader, writer) = std::pipe::pipe()?;
///
/// // Spawn a process that writes to stdout and stderr.
/// let mut peer = Command::new("bash")
/// .args([
/// "-c",
/// "echo -n foo\n\
/// echo -n bar >&2"
/// ])
/// .stdout(writer.try_clone()?)
/// .stderr(writer)
/// .spawn()?;
///
/// // Read and check the result.
/// let mut msg = String::new();
/// reader.read_to_string(&mut msg)?;
/// assert_eq!(&msg, "foobar");
///
/// peer.wait()?;
/// # Ok(())
/// # }
/// ```
#[unstable(feature = "anonymous_pipe", issue = "127154")]
pub fn try_clone(&self) -> io::Result<Self> {
self.0.try_clone().map(Self)
Expand Down
Loading