Skip to content

sciosci/AFT-MAG

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

28 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

A dataset of mentorship in science with semantic and demographic estimations

This is the code repository for the paper titled "A dataset of mentorship in science with semantic and demographic estimations".

Linking Academic Family Tree to Microsoft Academic Graph

Code:

  • prepare_people.ipynb: Normalizing researcher profiles
  • prepare_connect.ipynb: Extracting mentor-mentee pairs
  • prepare_aft_to_mag_affil.ipynb: Matching institutions between AFT and MAG
  • prepare_aft_to_mag_author.ipynb: Linking AFT researchers to MAG authors
  • prepare_mag_authorship.ipynb: Exporting authorship and paper IDs

Validations:

  • prepare_validation_paper.ipynb: Matching validation papers with MAG
  • validate_aft_to_mag_author.ipynb: Validating AFT-to-MAG author matching

Vector:

  • prepare_paper_author_vector_tfidf.ipynb: TF-IDF vectors of papers and authors

Usage note

To load TF-IDF vectors of papers:

from scipy.sparse import load_npz

paper_tfidf = load_npz('dataset/paper_tfidf.npz')
paper_tfidf.shape

paper_tfidf is a sparse matrix. Each row corresponds to a paper, with its ID given in the file paper_tfidf_MAGPaperID.txt.

Researchers' TF-IDF vectors can be loaded similarly.

SPECTER vectors of papers and researchers can be loaded in a row-like style:

import pickle

fin = open('dataset/paper_specter_0.pkl', 'rb')
unpickler = pickle.Unpickler(fin) 
while True:
    try:
        pubid, vec = unpickler.load()
        # 
    except EOFError:
        break
fin.close()

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published