Skip to content

Commit

Permalink
Remove unused vars in the triton backend (#2401)
Browse files Browse the repository at this point in the history
  • Loading branch information
ispobock authored Dec 8, 2024
1 parent 96db0f6 commit 61dec54
Show file tree
Hide file tree
Showing 3 changed files with 14 additions and 33 deletions.
21 changes: 4 additions & 17 deletions python/sglang/srt/layers/attention/triton_backend.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,11 +35,6 @@ def __init__(self, model_runner: ModelRunner):
model_runner.model_config.num_attention_heads // model_runner.tp_size
)

if global_server_args_dict.get("triton_attention_reduce_in_fp32", False):
self.reduce_dtype = torch.float32
else:
self.reduce_dtype = torch.float16

self.num_kv_splits = model_runner.server_args.triton_attention_num_kv_splits
self.v_head_dim = model_runner.token_to_kv_pool.get_value_buffer(0).shape[-1]

Expand All @@ -53,9 +48,6 @@ def init_forward_metadata(self, forward_batch: ForwardBatch):
"""Init auxiliary variables for triton attention backend."""

if forward_batch.forward_mode.is_decode():
start_loc = torch.zeros_like(forward_batch.seq_lens, dtype=torch.int32)
start_loc[1:] = torch.cumsum(forward_batch.seq_lens[:-1], dim=0)

attn_logits = torch.empty(
(
forward_batch.batch_size,
Expand All @@ -67,13 +59,12 @@ def init_forward_metadata(self, forward_batch: ForwardBatch):
device=self.device,
)

max_seq_len = torch.max(forward_batch.seq_lens).item()
max_extend_len = None
else:
start_loc = attn_logits = max_seq_len = None
attn_logits = None
max_extend_len = torch.max(forward_batch.extend_seq_lens).item()

self.forward_metadata = start_loc, attn_logits, max_seq_len, max_extend_len
self.forward_metadata = attn_logits, max_extend_len

def init_cuda_graph_state(self, max_bs: int):
self.cuda_graph_max_total_num_tokens = max_bs * self.cuda_graph_max_seq_len
Expand All @@ -96,9 +87,7 @@ def init_forward_metadata_capture_cuda_graph(
):
# NOTE: encoder_lens expected to be zeros or None
self.forward_metadata = (
self.cuda_graph_start_loc,
self.cuda_graph_attn_logits,
self.cuda_graph_max_seq_len,
None,
)

Expand Down Expand Up @@ -137,7 +126,7 @@ def forward_extend(
layer, forward_batch.out_cache_loc, k, v
)

start_loc, attn_logits, max_seq_len, max_extend_len = self.forward_metadata
_, max_extend_len = self.forward_metadata
self.extend_attention_fwd(
q.view(-1, layer.tp_q_head_num, layer.qk_head_dim),
k.contiguous(),
Expand Down Expand Up @@ -175,7 +164,7 @@ def forward_decode(
else:
o = torch.empty_like(q)

start_loc, attn_logits, max_seq_len, max_extend_len = self.forward_metadata
attn_logits, _ = self.forward_metadata

if save_kv_cache:
forward_batch.token_to_kv_pool.set_kv_buffer(
Expand All @@ -189,10 +178,8 @@ def forward_decode(
o.view(-1, layer.tp_q_head_num, layer.v_head_dim),
forward_batch.req_to_token_pool.req_to_token,
forward_batch.req_pool_indices,
start_loc,
forward_batch.seq_lens,
attn_logits,
max_seq_len,
self.num_kv_splits,
layer.scaling,
layer.logit_cap,
Expand Down
20 changes: 10 additions & 10 deletions python/sglang/srt/layers/attention/triton_ops/decode_attention.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,13 +19,23 @@
# Adapted from
# https://github.com/ModelTC/lightllm/blob/96353e868a840db4d103138caf15ed9dbea8c186/lightllm/models/deepseek2/triton_kernel/gqa_flash_decoding_stage1.py
# https://github.com/ModelTC/lightllm/blob/96353e868a840db4d103138caf15ed9dbea8c186/lightllm/models/deepseek2/triton_kernel/gqa_flash_decoding_stage2.py

import logging

import triton
import triton.language as tl

from sglang.srt.utils import is_hip

is_hip_ = is_hip()

logger = logging.getLogger(__name__)

# TODO: Remove this when triton>=3.2.0. This issue will not affect performance and accuracy.
logger.warn(
"The following error message 'operation scheduled before its operands' can be ignored."
)


@triton.jit
def tanh(x):
Expand Down Expand Up @@ -166,7 +176,6 @@ def _decode_att_m_fwd(
Req_to_tokens,
B_req_idx,
B_Seqlen,
max_len_in_batch,
num_kv_splits,
sm_scale,
logit_cap,
Expand Down Expand Up @@ -389,7 +398,6 @@ def _decode_grouped_att_m_fwd(
Req_to_tokens,
B_req_idx,
B_Seqlen,
max_len_in_batch,
num_kv_splits,
sm_scale,
logit_cap,
Expand Down Expand Up @@ -556,7 +564,6 @@ def decode_attention_fwd_normal(
b_req_idx,
b_seq_len,
attn_logits,
max_len_in_batch,
num_kv_splits,
sm_scale,
logit_cap=0.0,
Expand All @@ -569,7 +576,6 @@ def decode_attention_fwd_normal(
req_to_token,
b_req_idx,
b_seq_len,
max_len_in_batch,
num_kv_splits,
sm_scale,
logit_cap,
Expand All @@ -586,7 +592,6 @@ def decode_attention_fwd_grouped(
b_req_idx,
b_seq_len,
attn_logits,
max_len_in_batch,
num_kv_splits,
sm_scale,
logit_cap=0.0,
Expand All @@ -599,7 +604,6 @@ def decode_attention_fwd_grouped(
req_to_token,
b_req_idx,
b_seq_len,
max_len_in_batch,
num_kv_splits,
sm_scale,
logit_cap,
Expand All @@ -614,10 +618,8 @@ def decode_attention_fwd(
o,
req_to_token,
b_req_idx,
b_start_loc,
b_seq_len,
attn_logits,
max_len_in_batch,
num_kv_splits,
sm_scale,
logit_cap=0.0,
Expand All @@ -636,7 +638,6 @@ def decode_attention_fwd(
b_req_idx,
b_seq_len,
attn_logits,
max_len_in_batch,
num_kv_splits,
sm_scale,
logit_cap,
Expand All @@ -652,7 +653,6 @@ def decode_attention_fwd(
b_req_idx,
b_seq_len,
attn_logits,
max_len_in_batch,
num_kv_splits,
sm_scale,
logit_cap,
Expand Down
6 changes: 0 additions & 6 deletions test/srt/test_triton_attention_kernels.py
Original file line number Diff line number Diff line change
Expand Up @@ -196,7 +196,6 @@ def _test_decode_attention_once(self, B, H_Q, H_KV, D):

req_to_token = torch.arange(total_tokens, device="cuda").reshape(B, seq_len)
b_req_idx = torch.arange(B, device="cuda")
b_start_loc = torch.arange(0, total_tokens, seq_len, device="cuda")
b_seq_len = torch.full((B,), seq_len, device="cuda")

attn_logits = torch.empty(
Expand All @@ -212,10 +211,8 @@ def _test_decode_attention_once(self, B, H_Q, H_KV, D):
o,
req_to_token,
b_req_idx,
b_start_loc,
b_seq_len,
attn_logits,
seq_len,
num_kv_splits,
sm_scale,
)
Expand Down Expand Up @@ -255,7 +252,6 @@ def _test_grouped_decode_attention_once(self, B, H_Q, H_KV, D, D_V):

req_to_token = torch.arange(total_tokens, device="cuda").reshape(B, seq_len)
b_req_idx = torch.arange(B, device="cuda")
b_start_loc = torch.arange(0, total_tokens, seq_len, device="cuda")
b_seq_len = torch.full((B,), seq_len, device="cuda")

attn_logits = torch.empty(
Expand All @@ -273,7 +269,6 @@ def _test_grouped_decode_attention_once(self, B, H_Q, H_KV, D, D_V):
b_req_idx,
b_seq_len,
attn_logits,
seq_len,
num_kv_splits,
sm_scale,
)
Expand All @@ -293,7 +288,6 @@ def _test_grouped_decode_attention_once(self, B, H_Q, H_KV, D, D_V):
b_req_idx,
b_seq_len,
attn_logits1,
seq_len,
num_kv_splits,
sm_scale,
)
Expand Down

0 comments on commit 61dec54

Please sign in to comment.