-
Notifications
You must be signed in to change notification settings - Fork 710
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[kernel optimize] benchmark write_req_to_token_pool_triton and optimi…
…ze kernel (#2509)
- Loading branch information
Showing
1 changed file
with
345 additions
and
0 deletions.
There are no files selected for viewing
345 changes: 345 additions & 0 deletions
345
benchmark/kernels/scheduler_batch/benchmark_write_req_to_token_pool_triton.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,345 @@ | ||
import itertools | ||
import os | ||
from typing import List | ||
|
||
import numpy as np | ||
import pytest | ||
import torch | ||
import triton | ||
import triton.language as tl | ||
|
||
|
||
@triton.jit | ||
def write_req_to_token_pool_triton( | ||
req_to_token_ptr, # [max_batch, max_context_len] | ||
req_pool_indices, | ||
pre_lens, | ||
seq_lens, | ||
extend_lens, | ||
out_cache_loc, | ||
req_to_token_ptr_stride: tl.constexpr, | ||
): | ||
BLOCK_SIZE: tl.constexpr = 512 | ||
pid = tl.program_id(0) | ||
|
||
req_pool_index = tl.load(req_pool_indices + pid) | ||
pre_len = tl.load(pre_lens + pid) | ||
seq_len = tl.load(seq_lens + pid) | ||
|
||
# TODO: optimize this? | ||
cumsum_start = 0 | ||
for i in range(pid): | ||
cumsum_start += tl.load(extend_lens + i) | ||
|
||
num_loop = tl.cdiv(seq_len - pre_len, BLOCK_SIZE) | ||
for i in range(num_loop): | ||
offset = tl.arange(0, BLOCK_SIZE) + i * BLOCK_SIZE | ||
mask = offset < (seq_len - pre_len) | ||
value = tl.load(out_cache_loc + cumsum_start + offset, mask=mask) | ||
tl.store( | ||
req_to_token_ptr | ||
+ req_pool_index * req_to_token_ptr_stride | ||
+ offset | ||
+ pre_len, | ||
value, | ||
mask=mask, | ||
) | ||
|
||
|
||
@triton.jit | ||
def write_req_to_token_pool_triton_optimize( | ||
req_to_token_ptr, # [max_batch, max_context_len] | ||
req_pool_indices, | ||
pre_lens, | ||
seq_lens, | ||
extend_lens, | ||
out_cache_loc, | ||
req_to_token_ptr_stride: tl.constexpr, | ||
BLOCK_SIZE: tl.constexpr, | ||
): | ||
pid_batch = tl.program_id(0) | ||
pid_token = tl.program_id(1) | ||
|
||
req_pool_index = tl.load(req_pool_indices + pid_batch) | ||
pre_len = tl.load(pre_lens + pid_batch) | ||
seq_len = tl.load(seq_lens + pid_batch) | ||
extend_len = seq_len - pre_len | ||
|
||
cumsum_start = 0 | ||
for i in range(pid_batch): | ||
cumsum_start += tl.load(extend_lens + i) | ||
|
||
token_start = pid_token * BLOCK_SIZE | ||
|
||
offset = tl.arange(0, BLOCK_SIZE) | ||
actual_offset = token_start + offset | ||
mask = actual_offset < extend_len | ||
|
||
src_ptr = out_cache_loc + cumsum_start + actual_offset | ||
src_ptr = tl.max_contiguous(tl.multiple_of(src_ptr, BLOCK_SIZE), BLOCK_SIZE) | ||
value = tl.load(src_ptr, mask=mask) | ||
dst_ptr = ( | ||
req_to_token_ptr | ||
+ req_pool_index * req_to_token_ptr_stride | ||
+ actual_offset | ||
+ pre_len | ||
) | ||
dst_ptr = tl.max_contiguous(tl.multiple_of(dst_ptr, BLOCK_SIZE), BLOCK_SIZE) | ||
|
||
tl.store(dst_ptr, value, mask=mask) | ||
|
||
|
||
def write_req_to_token_pool_reference( | ||
req_to_token: torch.Tensor, | ||
req_pool_indices: torch.Tensor, | ||
pre_lens: torch.Tensor, | ||
seq_lens: torch.Tensor, | ||
extend_lens: torch.Tensor, | ||
out_cache_loc: torch.Tensor, | ||
) -> None: | ||
"""Reference implementation using PyTorch""" | ||
for i in range(len(req_pool_indices)): | ||
req_pool_idx = req_pool_indices[i].item() | ||
pre_len = pre_lens[i].item() | ||
seq_len = seq_lens[i].item() | ||
extend_len = extend_lens[i].item() | ||
|
||
cumsum_start = sum(extend_lens[:i].tolist()) | ||
|
||
# Copy values from out_cache_loc to req_to_token | ||
req_to_token[req_pool_idx, pre_len:seq_len] = out_cache_loc[ | ||
cumsum_start : cumsum_start + extend_len | ||
] | ||
|
||
|
||
def test_write_req_to_token_pool(): | ||
max_batch = 4097 | ||
max_context_len = 6148 | ||
batch_size = 1 | ||
extend_len = 14 | ||
|
||
# Initialize input tensors | ||
req_to_token = torch.zeros( | ||
(max_batch, max_context_len), dtype=torch.int32, device="cuda" | ||
) | ||
req_pool_indices = torch.tensor([42], dtype=torch.int32, device="cuda") | ||
pre_lens = torch.tensor([8], dtype=torch.int32, device="cuda") | ||
seq_lens = torch.tensor([22], dtype=torch.int32, device="cuda") | ||
extend_lens = torch.tensor([extend_len], dtype=torch.int32, device="cuda") | ||
out_cache_loc = torch.arange(extend_len, dtype=torch.int32, device="cuda") | ||
|
||
# Create copies for reference implementation | ||
req_to_token_ref = req_to_token.clone() | ||
req_to_token_opt = req_to_token.clone() | ||
|
||
# Run original triton kernel | ||
write_req_to_token_pool_triton[(batch_size,)]( | ||
req_to_token, | ||
req_pool_indices, | ||
pre_lens, | ||
seq_lens, | ||
extend_lens, | ||
out_cache_loc, | ||
max_context_len, | ||
) | ||
|
||
# Run optimized triton kernel | ||
def grid(batch_size, extend_len): | ||
num_token_blocks = triton.cdiv(extend_len, 512) | ||
return (batch_size, num_token_blocks) | ||
|
||
write_req_to_token_pool_triton_optimize[grid(batch_size, extend_len)]( | ||
req_to_token_opt, | ||
req_pool_indices, | ||
pre_lens, | ||
seq_lens, | ||
extend_lens, | ||
out_cache_loc, | ||
max_context_len, | ||
BLOCK_SIZE=512, | ||
) | ||
|
||
# Run reference implementation | ||
write_req_to_token_pool_reference( | ||
req_to_token_ref, | ||
req_pool_indices, | ||
pre_lens, | ||
seq_lens, | ||
extend_lens, | ||
out_cache_loc, | ||
) | ||
|
||
# Compare results | ||
torch.testing.assert_close(req_to_token, req_to_token_ref) | ||
torch.testing.assert_close(req_to_token_opt, req_to_token_ref) | ||
|
||
# Test case 2: batch size > 1 | ||
batch_size = 3 | ||
extend_lens_list = [14, 20, 30] | ||
total_extend_len = sum(extend_lens_list) | ||
|
||
req_to_token = torch.zeros( | ||
(max_batch, max_context_len), dtype=torch.int32, device="cuda" | ||
) | ||
req_pool_indices = torch.tensor([42, 100, 200], dtype=torch.int32, device="cuda") | ||
pre_lens = torch.tensor([8, 10, 15], dtype=torch.int32, device="cuda") | ||
seq_lens = torch.tensor([22, 30, 45], dtype=torch.int32, device="cuda") | ||
extend_lens = torch.tensor(extend_lens_list, dtype=torch.int32, device="cuda") | ||
out_cache_loc = torch.arange(total_extend_len, dtype=torch.int32, device="cuda") | ||
|
||
req_to_token_ref = req_to_token.clone() | ||
req_to_token_opt = req_to_token.clone() | ||
|
||
# Run original triton kernel | ||
write_req_to_token_pool_triton[(batch_size,)]( | ||
req_to_token, | ||
req_pool_indices, | ||
pre_lens, | ||
seq_lens, | ||
extend_lens, | ||
out_cache_loc, | ||
max_context_len, | ||
) | ||
|
||
# Run optimized triton kernel | ||
max_extend_len = max(extend_lens_list) | ||
write_req_to_token_pool_triton_optimize[grid(batch_size, max_extend_len)]( | ||
req_to_token_opt, | ||
req_pool_indices, | ||
pre_lens, | ||
seq_lens, | ||
extend_lens, | ||
out_cache_loc, | ||
max_context_len, | ||
BLOCK_SIZE=512, | ||
) | ||
|
||
# Run reference implementation | ||
write_req_to_token_pool_reference( | ||
req_to_token_ref, | ||
req_pool_indices, | ||
pre_lens, | ||
seq_lens, | ||
extend_lens, | ||
out_cache_loc, | ||
) | ||
|
||
# Compare results | ||
torch.testing.assert_close(req_to_token, req_to_token_ref) | ||
torch.testing.assert_close(req_to_token_opt, req_to_token_ref) | ||
|
||
|
||
def get_benchmark(): | ||
batch_sizes = [1, 2, 4, 8, 16, 32, 64, 128] | ||
extend_lens = [32, 64, 128, 256, 512, 1024, 2048, 4096, 8192] | ||
configs = list(itertools.product(batch_sizes, extend_lens)) | ||
|
||
@triton.testing.perf_report( | ||
triton.testing.Benchmark( | ||
x_names=["batch_size", "extend_len"], | ||
x_vals=configs, | ||
line_arg="provider", | ||
line_vals=["reference", "triton", "triton_optimize"], | ||
line_names=["PyTorch", "Triton", "Triton Optimized"], | ||
styles=[("blue", "-"), ("green", "-"), ("red", "-")], | ||
ylabel="us", | ||
plot_name="write-req-to-token-pool-performance", | ||
args={}, | ||
) | ||
) | ||
def benchmark(batch_size, extend_len, provider): | ||
max_batch = 256 | ||
max_context_len = 16384 | ||
|
||
extend_lens_list = [extend_len] * batch_size | ||
total_extend_len = sum(extend_lens_list) | ||
|
||
req_to_token = torch.zeros( | ||
(max_batch, max_context_len), dtype=torch.int32, device="cuda" | ||
) | ||
req_pool_indices = torch.arange(batch_size, dtype=torch.int32, device="cuda") | ||
pre_lens = torch.ones(batch_size, dtype=torch.int32, device="cuda") * 8 | ||
seq_lens = pre_lens + extend_len | ||
extend_lens = torch.tensor(extend_lens_list, dtype=torch.int32, device="cuda") | ||
out_cache_loc = torch.arange(total_extend_len, dtype=torch.int32, device="cuda") | ||
|
||
quantiles = [0.5, 0.2, 0.8] | ||
|
||
if provider == "reference": | ||
ms, min_ms, max_ms = triton.testing.do_bench( | ||
lambda: write_req_to_token_pool_reference( | ||
req_to_token.clone(), | ||
req_pool_indices, | ||
pre_lens, | ||
seq_lens, | ||
extend_lens, | ||
out_cache_loc, | ||
), | ||
quantiles=quantiles, | ||
) | ||
elif provider == "triton": | ||
ms, min_ms, max_ms = triton.testing.do_bench( | ||
lambda: write_req_to_token_pool_triton[(batch_size,)]( | ||
req_to_token.clone(), | ||
req_pool_indices, | ||
pre_lens, | ||
seq_lens, | ||
extend_lens, | ||
out_cache_loc, | ||
max_context_len, | ||
), | ||
quantiles=quantiles, | ||
) | ||
else: | ||
|
||
def run_optimized(): | ||
block_size = 128 if extend_len <= 1024 else 512 | ||
grid_config = (batch_size, triton.cdiv(extend_len, block_size)) | ||
write_req_to_token_pool_triton_optimize[grid_config]( | ||
req_to_token.clone(), | ||
req_pool_indices, | ||
pre_lens, | ||
seq_lens, | ||
extend_lens, | ||
out_cache_loc, | ||
max_context_len, | ||
BLOCK_SIZE=block_size, | ||
) | ||
|
||
ms, min_ms, max_ms = triton.testing.do_bench( | ||
run_optimized, quantiles=quantiles | ||
) | ||
|
||
return 1000 * ms, 1000 * max_ms, 1000 * min_ms | ||
|
||
return benchmark | ||
|
||
|
||
def run_benchmark(save_path: str = "./configs/benchmark_ops/write_req_to_token_pool/"): | ||
"""Run benchmark and save results""" | ||
|
||
# Ensure save path exists | ||
os.makedirs(save_path, exist_ok=True) | ||
|
||
# Run correctness test | ||
test_write_req_to_token_pool() | ||
print("Correctness test passed!") | ||
|
||
# Run performance test | ||
benchmark = get_benchmark() | ||
benchmark.run(print_data=True, save_path=save_path) | ||
|
||
|
||
if __name__ == "__main__": | ||
import argparse | ||
|
||
parser = argparse.ArgumentParser() | ||
parser.add_argument( | ||
"--save_path", | ||
type=str, | ||
default="./configs/benchmark_ops/write_req_to_token_pool/", | ||
help="Path to save benchmark results", | ||
) | ||
args = parser.parse_args() | ||
|
||
run_benchmark(args.save_path) |