-
Notifications
You must be signed in to change notification settings - Fork 710
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
enable chunked prefill for llava-onevision
- Loading branch information
Showing
5 changed files
with
221 additions
and
20 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,173 @@ | ||
""" | ||
Usage: | ||
python3 -m unittest test_vision_chunked_prefill.TestVisionChunkedPrefill.test_chunked_prefill | ||
""" | ||
|
||
import base64 | ||
import io | ||
import os | ||
import unittest | ||
from concurrent.futures import ThreadPoolExecutor | ||
from typing import Union | ||
|
||
import numpy as np | ||
import requests | ||
from decord import VideoReader, cpu | ||
from PIL import Image | ||
|
||
from sglang.srt.utils import kill_process_tree | ||
from sglang.test.test_utils import ( | ||
DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH, | ||
DEFAULT_URL_FOR_TEST, | ||
popen_launch_server, | ||
) | ||
|
||
|
||
class TestVisionChunkedPrefill(unittest.TestCase): | ||
def prepare_video_messages(self, video_path, max_frames_num=8): | ||
vr = VideoReader(video_path, ctx=cpu(0)) | ||
total_frame_num = len(vr) | ||
uniform_sampled_frames = np.linspace( | ||
0, total_frame_num - 1, max_frames_num, dtype=int | ||
) | ||
frame_idx = uniform_sampled_frames.tolist() | ||
frames = vr.get_batch(frame_idx).asnumpy() | ||
|
||
base64_frames = [] | ||
for frame in frames: | ||
pil_img = Image.fromarray(frame) | ||
buff = io.BytesIO() | ||
pil_img.save(buff, format="JPEG") | ||
base64_str = base64.b64encode(buff.getvalue()).decode("utf-8") | ||
base64_frames.append(base64_str) | ||
|
||
messages = [{"role": "user", "content": []}] | ||
frame_format = { | ||
"type": "image_url", | ||
"image_url": {"url": "data:image/jpeg;base64,{}"}, | ||
"modalities": "video", | ||
} | ||
|
||
for base64_frame in base64_frames: | ||
frame_format["image_url"]["url"] = "data:image/jpeg;base64,{}".format( | ||
base64_frame | ||
) | ||
messages[0]["content"].append(frame_format.copy()) | ||
|
||
prompt = {"type": "text", "text": "Please describe the video briefly."} | ||
messages[0]["content"].append(prompt) | ||
|
||
return messages | ||
|
||
def get_prompt_from_messages(self, messages): | ||
text = ( | ||
"<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n" | ||
"<|im_start|>user\n" | ||
) | ||
image_data = [] | ||
for content in messages[0]["content"]: | ||
if content["type"] == "image_url": | ||
text += "<image>\n" | ||
image_data.append(content["image_url"]["url"]) | ||
text += "Please describe the video briefly.<|im_end|>\n<|im_start|>assistant\n" | ||
return text, image_data | ||
|
||
def generate(self, text, image_data): | ||
response = requests.post( | ||
self.base_url + "/generate", | ||
json={ | ||
"text": text, | ||
"image_data": image_data, | ||
"sampling_params": { | ||
"temperature": 0, | ||
"max_new_tokens": 32, | ||
"no_stop_trim": True, | ||
"skip_special_tokens": False, | ||
}, | ||
"modalities": ["multi-images"], | ||
}, | ||
).json() | ||
return response["text"] | ||
|
||
def generate_for_video(self, batch, num_frame) -> Union[str, list[str]]: | ||
# prepare the video input about Steven introducing ipod nano | ||
url = "https://raw.githubusercontent.com/evolvinglmms-lab/sglang/dev/onevision_local/assets/jobs.mp4" | ||
cache_dir = os.path.expanduser("~/.cache") | ||
file_path = os.path.join(cache_dir, "jobs.mp4") | ||
os.makedirs(cache_dir, exist_ok=True) | ||
if not os.path.exists(file_path): | ||
response = requests.get(url) | ||
response.raise_for_status() | ||
with open(file_path, "wb") as f: | ||
f.write(response.content) | ||
|
||
if not batch: | ||
assert isinstance(num_frame, int) | ||
messages = self.prepare_video_messages(file_path, max_frames_num=num_frame) | ||
text, image_data = self.get_prompt_from_messages(messages) | ||
return self.generate(text, image_data) | ||
else: | ||
assert isinstance(num_frame, list) | ||
func_args = [] | ||
for max_frames_num in num_frame: | ||
messages = self.prepare_video_messages( | ||
file_path, | ||
max_frames_num=max_frames_num, | ||
) | ||
text, image_data = self.get_prompt_from_messages(messages) | ||
func_args.append((text, image_data)) | ||
|
||
with ThreadPoolExecutor(max_workers=10) as executor: | ||
responses = list(executor.map(lambda p: self.generate(*p), func_args)) | ||
|
||
return responses | ||
|
||
def run_generate(self, chunked_prefill_size, batch, num_frame): | ||
# launch server | ||
model = "lmms-lab/llava-onevision-qwen2-7b-ov" | ||
# model = "meta-llama/Llama-3.2-11B-Vision-Instruct" | ||
self.base_url = DEFAULT_URL_FOR_TEST | ||
process = popen_launch_server( | ||
model, | ||
self.base_url, | ||
timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH, | ||
other_args=[ | ||
"--chunked-prefill-size", | ||
f"{chunked_prefill_size}", | ||
], | ||
) | ||
try: | ||
return self.generate_for_video(batch, num_frame) | ||
finally: | ||
kill_process_tree(process.pid) | ||
|
||
def test_chunked_prefill(self): | ||
output_chunked = self.run_generate( | ||
chunked_prefill_size=1024, batch=False, num_frame=1 | ||
) | ||
output_no_chunked = self.run_generate( | ||
chunked_prefill_size=-1, batch=False, num_frame=1 | ||
) | ||
|
||
print("output with chunked prefill:") | ||
print(output_chunked) | ||
print("output without chunked prefill:") | ||
print(output_no_chunked) | ||
assert output_chunked == output_no_chunked | ||
|
||
output_chunked = self.run_generate( | ||
chunked_prefill_size=1024, batch=True, num_frame=[2, 6, 8, 10] | ||
) | ||
output_no_chunked = self.run_generate( | ||
chunked_prefill_size=-1, batch=True, num_frame=[2, 6, 8, 10] | ||
) | ||
|
||
print("output with chunked prefill:") | ||
print(output_chunked) | ||
print("output without chunked prefill:") | ||
print(output_no_chunked) | ||
assert output_chunked == output_no_chunked | ||
|
||
|
||
if __name__ == "__main__": | ||
unittest.main() |