-
Notifications
You must be signed in to change notification settings - Fork 710
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add InfiniteBench for long context benchmarking #2421
base: main
Are you sure you want to change the base?
Changes from 2 commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,78 @@ | ||
## Download dataset | ||
``` | ||
bash ./download_infinitebench.sh ~/data | ||
``` | ||
|
||
## Run benchmark | ||
|
||
### SGLang | ||
#### Set up environment | ||
```bash | ||
conda create -n sglang python=3.10 | ||
conda activate sglang | ||
pip install --upgrade pip | ||
pip install "sglang[all]" --find-links https://flashinfer.ai/whl/cu121/torch2.4/flashinfer/ | ||
``` | ||
|
||
#### Launch server and run eval | ||
``` | ||
python -m sglang.launch_server --model-path gradientai/Llama-3-8B-Instruct-Gradient-1048k --port 30000 --max-total-tokens 131072 | ||
``` | ||
|
||
In a separate terminal, run eval on the first 10 samples as follows | ||
``` | ||
python eval_long_context.py --task passkey --end-idx 10 --data-dir ~/data | ||
``` | ||
|
||
### TensorRT | ||
The following evaluation with TensorRT has been tested with 1xH100 (80 GB SXM5). | ||
|
||
#### Set up enviroment | ||
```bash | ||
conda create -n tensorrt python=3.10 | ||
conda activate tensorrt | ||
conda install -c conda-forge mpi4py openmpi | ||
sudo apt-get -y install libopenmpi-dev && pip install tensorrt_llm==0.15.0 | ||
``` | ||
|
||
```bash | ||
git clone https://github.com/NVIDIA/TensorRT-LLM.git | ||
cd TensorRT-LLM | ||
pip install --upgrade -r requirements-dev.txt | ||
cd examples/llama | ||
``` | ||
|
||
#### Prepare checkpoint | ||
```bash | ||
sudo apt install git-lfs | ||
git-lfs clone https://huggingface.co/gradientai/Llama-3-8B-Instruct-Gradient-1048k/ | ||
|
||
python convert_checkpoint.py \ | ||
--model_dir ./Llama-3-8B-Instruct-Gradient-1048k/ \ | ||
--output_dir /tmp/llama-3-8B-1048k/trt_ckpts \ | ||
--dtype float16 | ||
|
||
``` | ||
|
||
#### Build engine and run eval | ||
```bash | ||
python -m tensorrt_llm.commands.build \ | ||
--checkpoint_dir /tmp/llama-3-8B-1048k/trt_ckpts \ | ||
--output_dir /tmp/llama-3-8B-1048k/trt_engines \ | ||
--gemm_plugin float16 \ | ||
--max_num_tokens 4096 \ | ||
--max_input_len 131072 \ | ||
--max_seq_len 131082 \ | ||
--use_paged_context_fmha enable | ||
|
||
python ../eval_long_context.py \ | ||
--task passkey \ | ||
--engine_dir /tmp/llama-3-8B-1048k/trt_engines \ | ||
--tokenizer_dir ./Llama-3-8B-Instruct-Gradient-1048k/ \ | ||
--stop_idx 10 \ | ||
--max_input_length 131072 \ | ||
--enable_chunked_context \ | ||
--max_tokens_in_paged_kv_cache 131136 \ | ||
--data_dir ~/data \ | ||
--output_dir ./ | ||
``` |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,199 @@ | ||
# MIT License | ||
|
||
# Copyright (c) 2023 OpenBMB | ||
|
||
# Permission is hereby granted, free of charge, to any person obtaining a copy | ||
# of this software and associated documentation files (the "Software"), to deal | ||
# in the Software without restriction, including without limitation the rights | ||
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
# copies of the Software, and to permit persons to whom the Software is | ||
# furnished to do so, subject to the following conditions: | ||
|
||
# The above copyright notice and this permission notice shall be included in all | ||
# copies or substantial portions of the Software. | ||
|
||
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | ||
# SPDX-License-Identifier: Apache-2.0 | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
# reference: https://github.com/OpenBMB/InfiniteBench/blob/main/src/compute_scores.py | ||
|
||
import json | ||
import re | ||
import string | ||
from collections import Counter | ||
from pathlib import Path | ||
|
||
from tqdm import tqdm | ||
|
||
|
||
def normalize_answer(s: str) -> str: | ||
"""Lower text and remove punctuation, articles and extra whitespace.""" | ||
|
||
def remove_articles(text): | ||
return re.sub(r"\b(a|an|the)\b", " ", text) | ||
|
||
def white_space_fix(text): | ||
return " ".join(text.split()) | ||
|
||
def remove_punc(text): | ||
exclude = set(string.punctuation) | ||
return "".join(ch for ch in text if ch not in exclude) | ||
|
||
def lower(text): | ||
return text.lower() | ||
|
||
return white_space_fix(remove_articles(remove_punc(lower(s)))) | ||
|
||
|
||
def f1_score(prediction, ground_truth) -> tuple[float, float, float]: | ||
common = Counter(prediction) & Counter(ground_truth) | ||
num_same = sum(common.values()) | ||
if num_same == 0: | ||
return 0, 0, 0 | ||
precision = 1.0 * num_same / len(prediction) | ||
recall = 1.0 * num_same / len(ground_truth) | ||
f1 = (2 * precision * recall) / (precision + recall) | ||
return f1, precision, recall | ||
|
||
|
||
def load_json(fname): | ||
return json.load(open(fname)) | ||
|
||
|
||
def iter_jsonl(fname, cnt=None): | ||
i = 0 | ||
with open(fname, "r", encoding="utf8") as fin: | ||
for line in fin: | ||
if line.strip() == "": # Skip empty lines | ||
continue | ||
if i == cnt: | ||
break | ||
if line.strip() == "": # Skip empty lines | ||
continue | ||
yield json.loads(line) | ||
i += 1 | ||
|
||
|
||
def first_int_match(prediction): | ||
pred_list = re.split("[^0-9]", prediction) | ||
pred_value = "" | ||
for item in pred_list: | ||
if item != "": | ||
pred_value = item | ||
break | ||
return pred_value | ||
|
||
|
||
def split_retrieval_answer(pred: str): | ||
for c in ["\n", ":", '"', "'", ".", ",", "?", "!", "{", "}"]: | ||
pred = pred.replace(c, " ") | ||
words = pred.split() | ||
return words | ||
|
||
|
||
def get_score_one_kv_retrieval(pred, label) -> bool: | ||
for c in ["\n", ":", '"', "'", ".", ",", "?", "!", "{", "}"]: | ||
pred = pred.replace(c, " ") | ||
words = pred.split() | ||
return label in words | ||
|
||
|
||
def get_score_one_passkey(pred, label) -> bool: | ||
if isinstance(label, list): | ||
label = label[0] | ||
return label == first_int_match(pred) | ||
|
||
|
||
def get_score_one(pred: str, label: str, task_name: str) -> float: | ||
""" | ||
Computes the score for one prediction. | ||
Returns one float (zero and one for boolean values). | ||
""" | ||
NAME_TO_SCORE_GETTER = { | ||
# Retrieve | ||
"kv_retrieval": get_score_one_kv_retrieval, | ||
"kv_retrieval_prefix": get_score_one_kv_retrieval, | ||
"kv_retrieval_both": get_score_one_kv_retrieval, | ||
"passkey": get_score_one_passkey, | ||
} | ||
assert task_name in NAME_TO_SCORE_GETTER, f"Invalid task name: {task_name}" | ||
score = NAME_TO_SCORE_GETTER[task_name](pred, label) | ||
return float(score) | ||
|
||
|
||
def get_labels(preds: list) -> list[str]: | ||
possible_label_keys = ["ground_truth", "label"] | ||
for label_key in possible_label_keys: | ||
if label_key in preds[0]: | ||
return [x.get(label_key, "XXXXXXXXXX") for x in preds] | ||
raise ValueError(f"Cannot find label in {preds[0]}") | ||
|
||
|
||
def get_preds(preds: list, data_name: str) -> list[str]: | ||
pred_strings = [] | ||
possible_pred_keys = ["prediction", "pred"] | ||
for pred in preds: | ||
this_pred = "NO PREDICTION" | ||
for pred_key in possible_pred_keys: | ||
if pred_key in pred: | ||
this_pred = pred[pred_key] | ||
break | ||
else: | ||
raise ValueError(f"Cannot find prediction in {pred}") | ||
pred_strings.append(this_pred) | ||
return pred_strings | ||
|
||
|
||
def get_score(labels: list, preds: list, data_name: str) -> float: | ||
""" | ||
Computes the average score for a task. | ||
""" | ||
assert len(labels) == len(preds) | ||
scores = [] | ||
for label, pred in tqdm(zip(labels, preds)): | ||
score = get_score_one(pred, label, data_name) | ||
scores.append(score) | ||
return sum(scores) / len(scores) | ||
|
||
|
||
def load_json(preds_path): | ||
assert preds_path.exists(), f"Predictions not found in: {preds_path}" | ||
print("Loading prediction results from", preds_path) | ||
return list(iter_jsonl(preds_path)) | ||
|
||
|
||
def compute_scores(preds, data_name: str): | ||
labels = get_labels(preds) | ||
preds = get_preds(preds, data_name) | ||
|
||
acc = get_score(labels, preds, data_name) | ||
return acc | ||
|
||
|
||
ALL_TASKS = [ | ||
"passkey", | ||
"kv_retrieval", | ||
] | ||
|
||
if __name__ == "__main__": | ||
from args import parse_args | ||
|
||
arguments = parse_args() | ||
tasks = [arguments.task] | ||
for task in tasks: | ||
preds_path = Path(arguments.preds_file) | ||
preds = load_json(preds_path) | ||
acc = compute_scores(preds, task) | ||
print(acc) |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,8 @@ | ||
# reference: https://github.com/OpenBMB/InfiniteBench/blob/51d9b37b0f1790ead936df2243abbf7f0420e439/scripts/download_dataset.sh | ||
|
||
save_dir=$1 | ||
mkdir -p ${save_dir} | ||
|
||
for file in code_debug code_run kv_retrieval longbook_choice_eng longbook_qa_chn longbook_qa_eng longbook_sum_eng longdialogue_qa_eng math_calc math_find number_string passkey; do | ||
wget -c https://huggingface.co/datasets/xinrongzhang2022/InfiniteBench/resolve/main/${file}.jsonl?download=true -O ${save_dir}/${file}.jsonl | ||
done |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,111 @@ | ||
# reference: https://github.com/NVIDIA/TensorRT-LLM/blob/main/examples/eval_long_context.py | ||
import argparse | ||
import json | ||
import os | ||
import time | ||
|
||
from compute_scores import compute_scores | ||
from eval_utils import DATA_NAME_TO_MAX_NEW_TOKENS, create_prompt, get_answer, load_data | ||
|
||
import sglang as sgl | ||
from sglang.test.test_utils import ( | ||
add_common_sglang_args_and_parse, | ||
select_sglang_backend, | ||
) | ||
|
||
|
||
def validate_args(args): | ||
assert args.task in ["passkey", "kv_retrieval"], f"Invalid task: {args.task}" | ||
|
||
|
||
def write_answers(filename, model_id, results): | ||
with open(os.path.expanduser(filename), "w") as fout: | ||
for i in range(len(results)): | ||
ans_json = { | ||
"question_id": results[i]["question_id"], | ||
"model_id": model_id, | ||
"prediction": results[i]["prediction"], | ||
"ground_truth": results[i]["ground_truth"], | ||
} | ||
fout.write(json.dumps(ans_json) + "\n") | ||
|
||
|
||
@sgl.function | ||
def infinitebench(s, question, max_tokens): | ||
s += question | ||
s += sgl.gen( | ||
"answer", | ||
max_tokens=max_tokens, | ||
) | ||
|
||
|
||
def main(args): | ||
validate_args(args) | ||
|
||
# Select backend | ||
backend = select_sglang_backend(args) | ||
sgl.set_default_backend(backend) | ||
|
||
# Data | ||
data_name = args.task | ||
max_tokens = DATA_NAME_TO_MAX_NEW_TOKENS[data_name] # max output length | ||
lines = load_data(data_name, data_dir=args.data_dir) | ||
if args.end_idx is None: | ||
args.end_idx = len(lines) | ||
|
||
# Construct prompts | ||
questions = [] | ||
labels = [] | ||
for i in range(len(lines[args.start_idx : args.end_idx])): | ||
questions.append(create_prompt(lines[i], data_name, args.data_dir)) | ||
labels.append(get_answer(lines[i], data_name)) | ||
arguments = [{"question": q, "max_tokens": max_tokens} for q in questions] | ||
|
||
# Run requests | ||
tic = time.time() | ||
results = infinitebench.run_batch( | ||
arguments, | ||
temperature=0, | ||
num_threads=args.parallel, | ||
progress_bar=True, | ||
) | ||
latency = time.time() - tic | ||
|
||
# Compute scores | ||
results = [ | ||
{"ground_truth": label, "prediction": s["answer"], "question_id": line["id"]} | ||
for line, label, s in zip(lines, labels, results) | ||
] | ||
acc = compute_scores(results, args.task) | ||
print(f"#questions: {len(questions)}, Latency: {latency:.2f}, Accuracy: {acc:.3f}") | ||
|
||
# Write results to file | ||
model_id = backend.model_info["model_path"] | ||
answer_file = f"tmp_output_{data_name}_{args.backend}.txt" | ||
write_answers(answer_file, model_id, results) | ||
|
||
with open(args.result_file, "a") as fout: | ||
value = { | ||
"task": args.task, | ||
"backend": args.backend, | ||
"num_gpus": 1, | ||
"latency": round(latency, 3), | ||
"num_requests": len(questions), | ||
"other": { | ||
"num_questions": len(questions), | ||
"parallel": args.parallel, | ||
}, | ||
} | ||
fout.write(json.dumps(value) + "\n") | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument( | ||
"--task", type=str, choices=["passkey", "kv_retrieval"], required=True | ||
) | ||
parser.add_argument("--data-dir", type=str, default="./data") | ||
parser.add_argument("--start-idx", type=int, default=0) | ||
parser.add_argument("--end-idx", type=int, default=None) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. can you add more descriptions about the "--start-idx" and "--end-idx" ? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I removed these arguments, which were borrowed from tensorrt eval script, and added |
||
args = add_common_sglang_args_and_parse(parser) | ||
main(args) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I see that the dtype specified in the model's config.json is bfloat16. Could you please explain why float16 is being specified here?