Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

decoding attention kernel benchmark #2425

Merged
merged 2 commits into from
Dec 11, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,172 @@
import itertools

import torch
import triton
import triton.language as tl
from flashinfer import BatchDecodeWithPagedKVCacheWrapper

from sglang.srt.layers.attention.triton_ops.decode_attention import decode_attention_fwd


def decode_attention_sglang(
q, kv_data, batch_size, kv_len, head_num_q, head_num_kv, head_dim, num_kv_splits
):

k_buffer = kv_data[:, 0].view(-1, head_num_kv, head_dim).contiguous()
v_buffer = kv_data[:, 1].view(-1, head_num_kv, head_dim).contiguous()
o = torch.empty_like(q)
total_tokens = batch_size * kv_len
req_to_token = torch.arange(0, total_tokens).to(0).int().view(batch_size, kv_len)
b_req_idx = torch.arange(0, batch_size).to(0).int()
b_seq_len = torch.full((batch_size,), kv_len, dtype=torch.int32, device="cuda")
max_len_in_batch = kv_len
sm_scale = 1.0 / (head_dim**0.5)

attn_logits = torch.empty(
(batch_size, head_num_q, num_kv_splits, head_dim + 1),
dtype=torch.float32,
device="cuda",
)

decode_attention_fwd(
q,
k_buffer,
v_buffer,
o,
req_to_token,
b_req_idx,
b_seq_len,
attn_logits,
num_kv_splits,
sm_scale,
)

return o


def decode_attention_flashinfer(
q, kv_data, batch_size, kv_len, head_num_q, head_num_kv, head_dim, dtype
):

total_tokens = batch_size * kv_len
kv_indptr = torch.arange(0, batch_size + 1).to(0).int() * kv_len
kv_indices = torch.arange(0, total_tokens).to(0).int()
kv_last_page_len = torch.full((batch_size,), 1, dtype=torch.int32, device="cuda")

flashinfer_decode_wrapper.end_forward()
flashinfer_decode_wrapper.begin_forward(
kv_indptr,
kv_indices,
kv_last_page_len,
head_num_q,
head_num_kv,
head_dim,
1,
pos_encoding_mode="NONE",
data_type=dtype,
)
o = flashinfer_decode_wrapper.forward(
q.contiguous().view(-1, head_num_q, head_dim), kv_data
)

return o


def calculate_diff():

dtype = torch.bfloat16
batch_size = 4
kv_len = 16
head_num_q = 32
head_num_kv = 32
head_dim = 128

q = torch.randn(batch_size, head_num_q, head_dim, dtype=dtype, device="cuda")
kv_data = torch.randn(
batch_size * kv_len, 2, head_num_kv, head_dim, dtype=dtype, device="cuda"
)

output_sglang = decode_attention_sglang(
q,
kv_data,
batch_size,
kv_len,
head_num_q,
head_num_kv,
head_dim,
num_kv_splits=8,
)
output_flashinfer = decode_attention_flashinfer(
q, kv_data, batch_size, kv_len, head_num_q, head_num_kv, head_dim, dtype=dtype
)

print(f"SGLang output={output_sglang}")
print(f"FlashInfer output={output_flashinfer}")
if torch.allclose(output_sglang, output_flashinfer, atol=1e-2, rtol=1e-2):
print("✅ SGLang[Triton] and FlashInfer match")
else:
print("❌ SGLang[Triton] and FlashInfer differ")


head_dim = 128
dtype = torch.float16
batch_size_range = [2**i for i in range(0, 8, 2)]
kv_len_range = [2**i for i in range(6, 13, 1)]
head_num_range = [32, 64]
configs = list(itertools.product(head_num_range, batch_size_range, kv_len_range))


@triton.testing.perf_report(
triton.testing.Benchmark(
x_names=["head_num", "batch_size", "kv_len"],
x_vals=[list(_) for _ in configs],
line_arg="provider",
line_vals=["sglang_triton", "flashinfer"],
line_names=["SGLang[triton]", "FlashInfer"],
styles=[("green", "-"), ("red", "-")],
ylabel="us",
plot_name="decode-attention-performance",
args={},
)
)
def benchmark(head_num, batch_size, kv_len, provider):
head_num_q = head_num_kv = head_num
q = torch.randn(batch_size, head_num_q, head_dim, dtype=dtype, device="cuda")
kv_data = torch.randn(
batch_size * kv_len, 2, head_num_kv, head_dim, dtype=dtype, device="cuda"
)
quantiles = [0.5, 0.2, 0.8]
if provider == "sglang_triton":
ms, min_ms, max_ms = triton.testing.do_bench(
lambda: decode_attention_sglang(
q,
kv_data,
batch_size,
kv_len,
head_num_q,
head_num_kv,
head_dim,
num_kv_splits=8,
),
quantiles=quantiles,
)
if provider == "flashinfer":
ms, min_ms, max_ms = triton.testing.do_bench(
lambda: decode_attention_flashinfer(
q, kv_data, batch_size, kv_len, head_num_q, head_num_kv, head_dim, dtype
),
quantiles=quantiles,
)
return 1000 * ms, 1000 * max_ms, 1000 * min_ms


if __name__ == "__main__":
workspace_buffer = torch.empty(128 * 1024 * 1024, dtype=torch.int8, device="cuda")
global flashinfer_decode_wrapper
flashinfer_decode_wrapper = BatchDecodeWithPagedKVCacheWrapper(
workspace_buffer, "NHD", use_tensor_cores=False
)

calculate_diff()

benchmark.run(print_data=True)
Loading