Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix correctness issue for triton decoding kernel #2479

Merged
merged 2 commits into from
Dec 14, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
38 changes: 24 additions & 14 deletions python/sglang/srt/layers/attention/triton_ops/decode_attention.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@
logger = logging.getLogger(__name__)

# TODO: Remove this when triton>=3.2.0. This issue will not affect performance and accuracy.
logger.warn(
logger.warning(
"The following error message 'operation scheduled before its operands' can be ignored."
)

Expand Down Expand Up @@ -474,6 +474,7 @@ def _decode_grouped_att_m_fwd(
def _fwd_kernel_stage2(
Mid_O,
O,
B_Seqlen,
stride_mid_ob,
stride_mid_oh,
stride_mid_os,
Expand All @@ -486,6 +487,8 @@ def _fwd_kernel_stage2(
cur_batch = tl.program_id(0)
cur_head = tl.program_id(1)

cur_batch_seq_len = tl.load(B_Seqlen + cur_batch)

offs_d = tl.arange(0, BLOCK_DV)
mask_d = offs_d < Lv

Expand All @@ -497,19 +500,24 @@ def _fwd_kernel_stage2(
offs_logic = cur_batch * stride_mid_ob + cur_head * stride_mid_oh + Lv

for split_kv_id in range(0, NUM_KV_SPLITS):
tv = tl.load(
Mid_O + offs_v + split_kv_id * stride_mid_os, mask=mask_d, other=0.0
)
tlogic = tl.load(Mid_O + offs_logic + split_kv_id * stride_mid_os)
n_e_max = tl.maximum(tlogic, e_max)
kv_len_per_split = tl.cdiv(cur_batch_seq_len, NUM_KV_SPLITS)
split_kv_start = kv_len_per_split * split_kv_id
split_kv_end = tl.minimum(split_kv_start + kv_len_per_split, cur_batch_seq_len)

old_scale = tl.exp(e_max - n_e_max)
acc *= old_scale
exp_logic = tl.exp(tlogic - n_e_max)
acc += exp_logic * tv
if split_kv_end > split_kv_start:
tv = tl.load(
Mid_O + offs_v + split_kv_id * stride_mid_os, mask=mask_d, other=0.0
)
tlogic = tl.load(Mid_O + offs_logic + split_kv_id * stride_mid_os)
n_e_max = tl.maximum(tlogic, e_max)

e_sum = e_sum * old_scale + exp_logic
e_max = n_e_max
old_scale = tl.exp(e_max - n_e_max)
acc *= old_scale
exp_logic = tl.exp(tlogic - n_e_max)
acc += exp_logic * tv

e_sum = e_sum * old_scale + exp_logic
e_max = n_e_max

tl.store(
O + cur_batch * stride_obs + cur_head * stride_oh + offs_d,
Expand All @@ -523,6 +531,7 @@ def _decode_softmax_reducev_fwd(
q,
o,
v_buffer,
b_seq_len,
num_kv_splits,
):
batch, head_num = q.shape[0], q.shape[1]
Expand All @@ -541,6 +550,7 @@ def _decode_softmax_reducev_fwd(
_fwd_kernel_stage2[grid](
logits,
o,
b_seq_len,
logits.stride(0),
logits.stride(1),
logits.stride(2),
Expand Down Expand Up @@ -580,7 +590,7 @@ def decode_attention_fwd_normal(
sm_scale,
logit_cap,
)
_decode_softmax_reducev_fwd(attn_logits, q, o, v_buffer, num_kv_splits)
_decode_softmax_reducev_fwd(attn_logits, q, o, v_buffer, b_seq_len, num_kv_splits)


def decode_attention_fwd_grouped(
Expand Down Expand Up @@ -608,7 +618,7 @@ def decode_attention_fwd_grouped(
sm_scale,
logit_cap,
)
_decode_softmax_reducev_fwd(attn_logits, q, o, v_buffer, num_kv_splits)
_decode_softmax_reducev_fwd(attn_logits, q, o, v_buffer, b_seq_len, num_kv_splits)


def decode_attention_fwd(
Expand Down
10 changes: 6 additions & 4 deletions test/srt/test_triton_attention_kernels.py
Original file line number Diff line number Diff line change
Expand Up @@ -232,9 +232,9 @@ def test_decode_attention(self):
for B, H_Q, H_KV, D in configs:
self._test_decode_attention_once(B, H_Q, H_KV, D)

def _test_grouped_decode_attention_once(self, B, H_Q, H_KV, D, D_V):
def _test_grouped_decode_attention_once(self, B, S, H_Q, H_KV, D, D_V):
dtype = torch.bfloat16
seq_len = 128 # This represents the number of tokens already in the sequence
seq_len = S # This represents the number of tokens already in the sequence
total_tokens = B * seq_len
sm_scale = 1.0 / (D**0.5)
num_kv_splits = 8
Expand Down Expand Up @@ -300,6 +300,7 @@ def _test_grouped_decode_attention_once(self, B, H_Q, H_KV, D, D_V):
self.assertTrue(torch.allclose(o, o_grouped, atol=3e-2))

def test_grouped_decode_attention(self):
seq_lens = [5, 100, 128, 500]
configs = [
(2, 16, 16, 64, 64),
(2, 16, 1, 64, 64),
Expand All @@ -309,8 +310,9 @@ def test_grouped_decode_attention(self):
(2, 128, 1, 576, 512),
]

for B, H_Q, H_KV, D, D_V in configs:
self._test_grouped_decode_attention_once(B, H_Q, H_KV, D, D_V)
for S in seq_lens:
for B, H_Q, H_KV, D, D_V in configs:
self._test_grouped_decode_attention_once(B, S, H_Q, H_KV, D, D_V)


if __name__ == "__main__":
Expand Down
Loading