Skip to content

Commit

Permalink
Merge pull request #7 from stac-extensions/TomAugspurger-patch-1
Browse files Browse the repository at this point in the history
Update README.md
  • Loading branch information
TomAugspurger authored Nov 25, 2024
2 parents 68c4988 + 2259907 commit e39a6eb
Showing 1 changed file with 45 additions and 26 deletions.
71 changes: 45 additions & 26 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -55,35 +55,54 @@ This example demonstrates how consumers of this extension can use the data to si
an asset from STAC into an xarray Dataset.

```python
>>> import fsspec, xarray, pystac
>>> collection = pystac.read_file("examples/collection.json")
>>> asset = collection.assets["example"]
>>> import pystac, planetary_computer, xarray as xr

>>> collection = planetary_computer.sign(
... pystac.read_file("https://planetarycomputer.microsoft.com/api/stac/v1/collections/terraclimate")
... )
>>> asset = collection.assets["zarr-abfs"]
>>> asset.media_type
'application/vnd+zarr'
>>> store = fsspec.get_mapper(asset.href, **asset.properties["xarray:storage_options"])
>>> ds = xarray.open_zarr(store, **asset.properties["xarray:open_kwargs"])

>>> ds = xr.open_dataset(
... asset.href,
... **asset.extra_fields["xarray:open_kwargs"]
... )
>>> ds
<xarray.Dataset>
Dimensions: (crs: 1, lat: 4320, lon: 8640, time: 744)
<xarray.Dataset> Size: 2TB
Dimensions: (time: 768, lat: 4320, lon: 8640, crs: 1)
Coordinates:
* crs (crs) int16 3
* lat (lat) float64 89.98 89.94 89.9 ... -89.94 -89.98
* lon (lon) float64 -180.0 -179.9 -179.9 ... 179.9 180.0
* time (time) datetime64[ns] 1958-01-01 ... 2019-12-01
Data variables: (12/18)
aet (time, lat, lon) float32 dask.array<chunksize=(12, 1440, 1440), meta=np.ndarray>
def (time, lat, lon) float32 dask.array<chunksize=(12, 1440, 1440), meta=np.ndarray>
pdsi (time, lat, lon) float32 dask.array<chunksize=(12, 1440, 1440), meta=np.ndarray>
pet (time, lat, lon) float32 dask.array<chunksize=(12, 1440, 1440), meta=np.ndarray>
ppt (time, lat, lon) float32 dask.array<chunksize=(12, 1440, 1440), meta=np.ndarray>
ppt_station_influence (time, lat, lon) float32 dask.array<chunksize=(12, 1440, 1440), meta=np.ndarray>
... ...
tmin (time, lat, lon) float32 dask.array<chunksize=(12, 1440, 1440), meta=np.ndarray>
tmin_station_influence (time, lat, lon) float32 dask.array<chunksize=(12, 1440, 1440), meta=np.ndarray>
vap (time, lat, lon) float32 dask.array<chunksize=(12, 1440, 1440), meta=np.ndarray>
vap_station_influence (time, lat, lon) float32 dask.array<chunksize=(12, 1440, 1440), meta=np.ndarray>
vpd (time, lat, lon) float32 dask.array<chunksize=(12, 1440, 1440), meta=np.ndarray>
ws (time, lat, lon) float32 dask.array<chunksize=(12, 1440, 1440), meta=np.ndarray>
* crs (crs) int16 2B 3
* lat (lat) float64 35kB 89.98 89.94 89.9 89.85 ... -89.9 -89.94 -89.98
* lon (lon) float64 69kB -180.0 -179.9 -179.9 ... 179.9 179.9 180.0
* time (time) datetime64[ns] 6kB 1958-01-01 1958-02-01 ... 2021-12-01
Data variables: (12/14)
aet (time, lat, lon) float32 115GB dask.array<chunksize=(12, 1024, 1024), meta=np.ndarray>
def (time, lat, lon) float32 115GB dask.array<chunksize=(12, 1024, 1024), meta=np.ndarray>
pdsi (time, lat, lon) float32 115GB dask.array<chunksize=(12, 1024, 1024), meta=np.ndarray>
pet (time, lat, lon) float32 115GB dask.array<chunksize=(12, 1024, 1024), meta=np.ndarray>
ppt (time, lat, lon) float64 229GB dask.array<chunksize=(12, 1024, 1024), meta=np.ndarray>
q (time, lat, lon) float64 229GB dask.array<chunksize=(12, 1024, 1024), meta=np.ndarray>
... ...
swe (time, lat, lon) float64 229GB dask.array<chunksize=(12, 1024, 1024), meta=np.ndarray>
tmax (time, lat, lon) float32 115GB dask.array<chunksize=(12, 1024, 1024), meta=np.ndarray>
tmin (time, lat, lon) float32 115GB dask.array<chunksize=(12, 1024, 1024), meta=np.ndarray>
vap (time, lat, lon) float32 115GB dask.array<chunksize=(12, 1024, 1024), meta=np.ndarray>
vpd (time, lat, lon) float32 115GB dask.array<chunksize=(12, 1024, 1024), meta=np.ndarray>
ws (time, lat, lon) float32 115GB dask.array<chunksize=(12, 1024, 1024), meta=np.ndarray>
Attributes: (12/52)
Conventions: CF-1.6
acknowledgment: Please cite the references included here...
cdm_data_type: GRID
contributor_email: khegewisch@ucmerced.edu
contributor_name: Katherine Hegewisch
contributor_role: Postdoctoral Fellow
... ...
time_coverage_duration: P1Y
time_coverage_end: 1958-12-01T00:0
time_coverage_resolution: P1M
time_coverage_start: 1958-01-01T00:0
title: TerraClimate: monthly climate and climat...
version: v1.0
```

## Contributing
Expand Down

0 comments on commit e39a6eb

Please sign in to comment.