Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[layers] Fix bug: LayerNormalization registered as BatchNormalization #2174

Merged
merged 1 commit into from
Oct 8, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion tfjs-layers/src/layers/normalization.ts
Original file line number Diff line number Diff line change
Expand Up @@ -472,7 +472,7 @@ export interface LayerNormalizationLayerArgs extends LayerArgs {

export class LayerNormalization extends Layer {
/** @nocollapse */
static className = 'BatchNormalization';
static className = 'LayerNormalization';

private axis: number|number[];
readonly epsilon: number;
Expand Down
11 changes: 11 additions & 0 deletions tfjs-layers/src/layers/normalization_test.ts
Original file line number Diff line number Diff line change
Expand Up @@ -692,6 +692,17 @@ describe('LayerNormalization Layer: Symbolic', () => {
const layerPrime = tfl.layers.layerNormalization(tsConfig);
expect(layerPrime.getConfig()).toEqual(layer.getConfig());
});

it('Deserialize model with BatchNorm Layer', async () => {
// tslint:disable:max-line-length
const modelJSONString =
`{"class_name": "Sequential", "config": {"name": "sequential", "layers": [{"class_name": "Dense", "config": {"name": "dense", "trainable": true, "batch_input_shape": [null, 5], "dtype": "float32", "units": 10, "activation": "linear", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}, {"class_name": "BatchNormalization", "config": {"name": "batch_normalization", "trainable": true, "dtype": "float32", "axis": [1], "momentum": 0.99, "epsilon": 0.001, "center": true, "scale": true, "beta_initializer": {"class_name": "Zeros", "config": {}}, "gamma_initializer": {"class_name": "Ones", "config": {}}, "moving_mean_initializer": {"class_name": "Zeros", "config": {}}, "moving_variance_initializer": {"class_name": "Ones", "config": {}}, "beta_regularizer": null, "gamma_regularizer": null, "beta_constraint": null, "gamma_constraint": null}}, {"class_name": "Dense", "config": {"name": "dense_1", "trainable": true, "dtype": "float32", "units": 1, "activation": "sigmoid", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}}, "bias_initializer": {"class_name": "Zeros", "config": {}}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}}]}, "keras_version": "2.2.4-tf", "backend": "tensorflow"}`;
// tslint:enable:max-line-length
const model = await tfl.models.modelFromJSON(JSON.parse(modelJSONString));
const ys = model.predict(zeros([3, 5])) as Tensor;
expect(ys.shape).toEqual([3, 1]);
expect(model.layers[1].getWeights().length).toEqual(4);
});
});

describeMathCPUAndGPU('LayerNormalization Layer: Tensor', () => {
Expand Down