Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Padds v05 #227

Merged
merged 6 commits into from
Aug 12, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion .travis.yml
Original file line number Diff line number Diff line change
Expand Up @@ -14,8 +14,9 @@ install:
- pip install pandas
- pip install scipy
- pip install click
- pip install deap
# Need to force pytest-cov to v2.6 as current version (2.6.1) is deprecated
- pip install pytest pytest-pep8 pytest-cov==2.6
- pip install pytest==3.10.1 pytest-pep8 pytest-cov==2.6
# Use docutils to generate html describe
- pip install docutils
- pip install numba
Expand Down
2 changes: 1 addition & 1 deletion spotpy/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,5 +38,5 @@
from . import examples # Contains tutorials how to use SPOTPY
from . import describe # Contains some helper functions to describe smaplers and setups
from .hydrology import signatures # Quantifies goodness of fit between simulation and evaluation data with hydrological signatures

from . import unittests
__version__ = '1.5.2'
3 changes: 2 additions & 1 deletion spotpy/algorithms/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,4 +31,5 @@
from .fscabc import fscabc # Fitness Scaling Artificial Bee Colony
from .dream import dream # DiffeRential Evolution Adaptive Metropolis
from .list_sampler import list_sampler # Samples from given spotpy database
from .dds import dds # Dynamically Dimensioned Search algorithm by Bryan Tolson.
from .dds import dds # Dynamically Dimensioned Search algorithm by Bryan Tolson.
from .padds import padds
82 changes: 49 additions & 33 deletions spotpy/algorithms/_algorithm.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,8 @@
import numpy as np
import time
import threading
import inspect
import sys


try:
Expand Down Expand Up @@ -49,7 +51,7 @@ def __init__(self, repetitions, algorithm_name, optimization_direction, parnames
self.compare = self.maximizer
print('The objective function will be minimized')
if optimization_direction == 'grid':
self.compare = self.grid
self.compare = self.grid

self.rep = 0
self.parnames = parnames
Expand All @@ -66,9 +68,9 @@ def __init__(self, repetitions, algorithm_name, optimization_direction, parnames

def minimizer(self, objval, params):
if objval < self.objectivefunction_min:
self.objectivefunction_min = objval
self.objectivefunction_min = objval
self.params_min = list(params)

def maximizer(self, objval, params):
if objval > self.objectivefunction_max:
self.objectivefunction_max = objval
Expand All @@ -87,14 +89,15 @@ def __call__(self, objectivefunction, params, block_print=False):
self.rep+=1
if type(objectivefunction) == type([]): #TODO: change to iterable
self.compare(objectivefunction[0], params)

elif type(objectivefunction) == type(np.array([])):
pass
else:
self.compare(objectivefunction, params)


if self.rep == self.repetitions:
self.stop = True

if not block_print:
self.print_status()

Expand All @@ -107,38 +110,38 @@ def print_status(self):
timestr = time.strftime("%H:%M:%S", time.gmtime(round(avg_time_per_run * (self.repetitions - (self.rep + 1)))))
if self.optimization_direction == 'minimize':
text = '%i of %i, minimal objective function=%g, time remaining: %s' % (
self.rep, self.repetitions, self.objectivefunction_min, timestr)
self.rep, self.repetitions, self.objectivefunction_min, timestr)

if self.optimization_direction == 'maximize':
text = '%i of %i, maximal objective function=%g, time remaining: %s' % (
self.rep, self.repetitions, self.objectivefunction_max, timestr)
self.rep, self.repetitions, self.objectivefunction_max, timestr)

if self.optimization_direction == 'grid':
text = '%i of %i, min objf=%g, max objf=%g, time remaining: %s' % (
self.rep, self.repetitions, self.objectivefunction_min, self.objectivefunction_max, timestr)

print(text)
self.last_print = time.time()

def print_status_final(self):
print('\n*** Final SPOTPY summary ***')
print('Total Duration: ' + str(round((time.time() - self.starttime), 2)) + ' seconds')
print('Total Repetitions:', self.rep)

if self.optimization_direction == 'minimize':
if self.optimization_direction == 'minimize':
print('Minimal objective value: %g' % (self.objectivefunction_min))
print('Corresponding parameter setting:')
for i in range(self.parameters):
text = '%s: %g' % (self.parnames[i], self.params_min[i])
print(text)

if self.optimization_direction == 'maximize':
print('Maximal objective value: %g' % (self.objectivefunction_max))
print('Corresponding parameter setting:')
for i in range(self.parameters):
text = '%s: %g' % (self.parnames[i], self.params_max[i])
print(text)

if self.optimization_direction == 'grid':
print('Minimal objective value: %g' % (self.objectivefunction_min))
print('Corresponding parameter setting:')
Expand All @@ -151,10 +154,10 @@ def print_status_final(self):
for i in range(self.parameters):
text = '%s: %g' % (self.parnames[i], self.params_max[i])
print(text)

print('******************************\n')


def __repr__(self):
return 'Min objectivefunction: %g \n Max objectivefunction: %g' % (
self.objectivefunction_min, self.objectivefunction_max)
Expand Down Expand Up @@ -206,10 +209,10 @@ class _algorithm(object):
_unaccepted_parameter_types = (parameter.List, )

def __init__(self, spot_setup, dbname=None, dbformat=None, dbinit=True,
dbappend=False, parallel='seq', save_sim=True, breakpoint=None,
backup_every_rep=100, save_threshold=-np.inf, db_precision=np.float16,
dbappend=False, parallel='seq', save_sim=True, breakpoint=None,
backup_every_rep=100, save_threshold=-np.inf, db_precision=np.float16,
sim_timeout=None, random_state=None, optimization_direction='grid', algorithm_name=''):

# Initialize the user defined setup class
self.setup = spot_setup
param_info = parameter.get_parameters_array(self.setup, unaccepted_parameter_types=self._unaccepted_parameter_types)
Expand Down Expand Up @@ -290,6 +293,12 @@ def __init__(self, spot_setup, dbname=None, dbformat=None, dbinit=True,
self.repeat = ForEach(self.simulate)


# method "save" needs to know whether objective function result is list or float, default is float
self.like_struct_typ = type(1.1)




def __str__(self):
return '{type}({mtype}())->{dbname}'.format(
type=type(self).__name__,
Expand All @@ -307,7 +316,7 @@ def get_parameters(self):
return pars[self.non_constant_positions]

def set_repetiton(self, repetitions):
self.status = _RunStatistic(repetitions, self.algorithm_name,
self.status = _RunStatistic(repetitions, self.algorithm_name,
self.optimization_direction, self.parnames)
# In MPI, this command will do nothing on the master process
# but the worker processes are going to wait for jobs.
Expand Down Expand Up @@ -336,22 +345,29 @@ def _init_database(self, like, randompar, simulations):

self.dbinit = False


def __is_list_type(self, data):
if type(data) == type:
return data == list or data == type(np.array([]))
else:
return type(data) == list or type(data) == type(np.array([]))

def save(self, like, randompar, simulations, chains=1):
# Initialize the database if no run was performed so far
self._init_database(like, randompar, simulations)

#try if like is a list of values compare it with save threshold setting
try:
if self.__is_list_type(self.like_struct_typ) and self.__is_list_type(self.save_threshold):
if all(i > j for i, j in zip(like, self.save_threshold)): #Compares list/list
self.datawriter.save(like, randompar, simulations, chains=chains)
#If like value is not a iterable, it is assumed to be a float
except TypeError: # This is also used if not threshold was set
try:
if like>self.save_threshold: #Compares float/float
self.datawriter.save(like, randompar, simulations, chains=chains)
except TypeError:# float/list would result in an error, because it does not make sense
if like[0]>self.save_threshold: #Compares list/float
self.datawriter.save(like, randompar, simulations, chains=chains)
if not self.__is_list_type(self.like_struct_typ) and not self.__is_list_type(self.save_threshold):
if like>self.save_threshold: #Compares float/float
self.datawriter.save(like, randompar, simulations, chains=chains)
if self.__is_list_type(self.like_struct_typ) and not self.__is_list_type(self.save_threshold):
if like[0]>self.save_threshold: #Compares list/float
self.datawriter.save(like, randompar, simulations, chains=chains)
if not self.__is_list_type(self.like_struct_typ) and self.__is_list_type(self.save_threshold): #Compares float/list
if (like > self.save_threshold).all:
self.datawriter.save(like, randompar, simulations, chains=chains)

def read_breakdata(self, dbname):
''' Read data from a pickle file if a breakpoint is set.
Expand Down Expand Up @@ -392,7 +408,7 @@ def postprocessing(self, rep, params, simulation, chains=1, save_run=True, negat
# Save everything in the database, if save is True
# This is needed as some algorithms just want to know the fitness,
# before they actually save the run in a database (e.g. sce-ua)

self.status(like,params,block_print=block_print)

if save_run is True and simulation is not None:
Expand Down
24 changes: 0 additions & 24 deletions spotpy/algorithms/demcz.py
Original file line number Diff line number Diff line change
Expand Up @@ -555,30 +555,6 @@ def _dream_proposals(currentVectors, history, dimensions, nChains, DEpairs, gamm
return proposalVectors


def _dream2_proposals(currentVectors, history, dimensions, nChains, DEpairs,

gamma, jitter, eps):
"""
generates and returns proposal vectors given the current states
NOT USED ATM
"""

sampleRange = history.ncombined_history
currentIndex = np.arange(sampleRange - nChains, sampleRange)[:, np.newaxis]
combined_history = history.combined_history

# choose some chains without replacement to combine
chains = _random_no_replace(1, sampleRange - 1, nChains)

# makes sure we have already selected the current chain so it is not replaced
# this ensures that the the two chosen chains cannot be the same as the
# chain for which the jump is
chains += (chains >= currentIndex)

proposalVectors = combined_history[chains[:, 0], :]
return proposalVectors


class _GRConvergence:
"""
Gelman Rubin convergence diagnostic calculator class. It currently only calculates the naive
Expand Down
Loading