Skip to content
/ LaRa Public

LaRa: Latents and Rays for Multi-Camera Bird’s-Eye-View Semantic Segmentation

Notifications You must be signed in to change notification settings

valeoai/LaRa

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LaRa: Latents and Rays for
Multi-Camera Bird’s-Eye-View
Semantic Segmentation

Lightning Config: Hydra Template
Paper Conference

This is the reference PyTorch implementation for training and testing depth prediction models using the method described in our paper LaRa: Latents and Rays for Multi-Camera Bird’s-Eye-View Semantic Segmentation

If you find our work useful, please consider citing:

@inproceedings{
    bartoccioni2022lara,
    title={LaRa: Latents and Rays for Multi-Camera Bird{\textquoteright}s-Eye-View Semantic Segmentation},
    author={Florent Bartoccioni and Eloi Zablocki and Andrei Bursuc and Patrick Perez and Matthieu Cord and Karteek Alahari},
    booktitle={6th Annual Conference on Robot Learning},
    year={2022},
    url={https://openreview.net/forum?id=abd_D-iVjk0}
}

⚙ Setup

Environment

First, clone the project

git clone https://github.com/F-Barto/LaRa.git
cd LaRa

Then, create the conda environment, install dependencies, activate env, and install project.

conda env create -n LaRa -f requirements.yaml
conda activate LaRa
pip install -e .

Paths configuration

Change the paths present in the .env file to configure the saving dir and the path to your dataset.

🏋️ Training

Note A smaller and faster version of LaRa is available with model=LaRaUP. BEV features are first predicted at 25x25 resolution and then upsampled to 200x200.

Note Results also improve with integrating plucker coordinates as geometric embedding (in addition to cam origin and ray direction) We recommand using experiment=LaRa_inCamplucker_outCoord

Train model with chosen experiment configuration from configs/experiment/

python train.py experiment=LaRa_inCamrays_outCoord

You can override any parameter from the command line like this

python train.py experiment=LaRa_inCamplucker_outCoord model=LaRaUP trainer.max_epochs=20 datamodule.batch_size=3

In tensorboard image logs, the ground-truth BEV map will be color-coded following:

  • RED visibility of whole object is between and 0 and 40% (visibility=1)
  • GREEN visibility of whole object is between and 40 and 60% (visibility=2)
  • CYAN visibility of whole object is between and 60 and 80% (visibility=3)
  • YELLOW visibility of whole object is between and 80 and 100% (visibility=4)

🎖️ Acknowledgements

This project used or adapted code from:

In particular, to structure our code we used: https://github.com/ashleve/lightning-hydra-template

Please consider giving them a star or citing their work if you use them.

About

LaRa: Latents and Rays for Multi-Camera Bird’s-Eye-View Semantic Segmentation

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages