Skip to content

Commit

Permalink
[Model] [Quantization] Support deepseek_v3 w8a8 fp8 block-wise quanti…
Browse files Browse the repository at this point in the history
…zation (#11523)

Signed-off-by: mgoin <[email protected]>
Signed-off-by: simon-mo <[email protected]>
Signed-off-by: simon-mo <[email protected]>
Co-authored-by: simon-mo <[email protected]>
Co-authored-by: simon-mo <[email protected]>
Co-authored-by: HandH1998 <[email protected]>
  • Loading branch information
4 people authored Dec 26, 2024
1 parent 720b10f commit 2072924
Show file tree
Hide file tree
Showing 8 changed files with 931 additions and 70 deletions.
265 changes: 265 additions & 0 deletions tests/kernels/test_block_fp8.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,265 @@
# Adapted from https://github.com/sgl-project/sglang/pull/2575
import itertools

import pytest
import torch

from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.fused_moe import fused_moe
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
per_token_group_quant_fp8, w8a8_block_fp8_matmul)
from vllm.platforms import current_platform

if current_platform.get_device_capability() < (9, 0):
pytest.skip("FP8 Triton requires CUDA 9.0 or higher",
allow_module_level=True)

# Test configurations
DTYPES = [torch.bfloat16] # [torch.half, torch.bfloat16, torch.float32]
NUM_TOKENS = [7, 83, 2048]
D = [512, 4096, 5120, 13824]
GROUP_SIZE = [64, 128, 256, 512]
M = [1, 7, 83, 512, 2048]
N = [128, 512, 1024, 4096, 7748, 13824]
K = [256, 4096, 5120, 3884, 13824]
# Deepseek-V3's intermediate size 18432, so N is 18432*2/8=4608 at TP8
# and its hidden size is 7168.
M_moe = [1, 7, 83, 512, 2048]
N_moe = [4608] # [128, 4608, 13824]
K_moe = [7168] # [256, 7168, 13824]
BLOCK_SIZE = [[128, 128]]
E = [256] # [8, 24, 128, 256]
TOP_KS = [1] # [1, 2, 6]
OUT_DTYPES = [torch.bfloat16] # [torch.float32, torch.half, torch.bfloat16]
SEEDS = [0]


def native_per_token_group_quant_fp8(x,
group_size,
eps=1e-10,
dtype=torch.float8_e4m3fn):
"""Function to perform per-token-group quantization on an input tensor
`x` using native torch."""
assert x.shape[-1] % group_size == 0, ("the last dimension of `x` cannot "
"be divisible by `group_size`")
assert x.is_contiguous(), "`x` is not contiguous"

finfo = torch.finfo(dtype)
fp8_min = finfo.min
fp8_max = finfo.max

x_ = x.reshape(x.numel() // group_size, group_size)
amax = x_.abs().max(dim=-1,
keepdim=True)[0].clamp(min=eps).to(torch.float32)
x_s = amax / fp8_max
x_q = (x_ / x_s).clamp(min=fp8_min, max=fp8_max).to(dtype)
x_q = x_q.reshape(x.shape)
x_s = x_s.reshape(x.shape[:-1] + (x.shape[-1] // group_size, ))

return x_q, x_s


def native_w8a8_block_fp8_matmul(A,
B,
As,
Bs,
block_size,
output_dtype=torch.float16):
"""Matrix multiplication with block-wise quantization using native torch."""
A = A.to(torch.float32)
B = B.to(torch.float32)
assert A.shape[-1] == B.shape[-1]
assert B.ndim == 2 and B.is_contiguous() and Bs.ndim == 2
assert len(block_size) == 2
block_n, block_k = block_size[0], block_size[1]
assert (A.shape[-1] + block_k - 1) // block_k == As.shape[-1]
assert A.shape[:-1] == As.shape[:-1]

M = A.numel() // A.shape[-1]
N, K = B.shape
origin_C_shape = A.shape[:-1] + (N, )
A = A.reshape(M, A.shape[-1])
As = As.reshape(M, As.shape[-1])
n_tiles = (N + block_n - 1) // block_n
k_tiles = (K + block_k - 1) // block_k
assert n_tiles == Bs.shape[0]
assert k_tiles == Bs.shape[1]

C_shape = (M, N)
C = torch.zeros(C_shape, dtype=torch.float32, device=A.device)

A_tiles = [
A[:, i * block_k:min((i + 1) * block_k, K)] for i in range(k_tiles)
]
B_tiles = [[
B[j * block_n:min((j + 1) * block_n, N),
i * block_k:min((i + 1) * block_k, K), ] for i in range(k_tiles)
] for j in range(n_tiles)]
C_tiles = [
C[:, j * block_n:min((j + 1) * block_n, N)] for j in range(n_tiles)
]
As_tiles = [As[:, i:i + 1] for i in range(k_tiles)]

for i in range(k_tiles):
for j in range(n_tiles):
a = A_tiles[i]
b = B_tiles[j][i]
c = C_tiles[j]
s = As_tiles[i] * Bs[j][i]
c[:, :] += torch.matmul(a, b.t()) * s

C = C.reshape(origin_C_shape).to(output_dtype)
return C


def torch_w8a8_block_fp8_moe(a, w1, w2, w1_s, w2_s, score, topk, block_shape):
"""Fused moe with block-wise quantization using native torch."""
B, D = a.shape
a = a.view(B, -1, D).repeat(1, topk, 1).reshape(-1, D)
out = torch.zeros(B * topk, w2.shape[1], dtype=a.dtype, device=a.device)
score = torch.softmax(score, dim=-1, dtype=torch.float32)
topk_weight, topk_ids = torch.topk(score, topk)
topk_weight = topk_weight.view(-1)
topk_ids = topk_ids.view(-1)

_, block_k = block_shape[0], block_shape[1]
a_q, a_s = native_per_token_group_quant_fp8(a, block_k)
a_q = a_q.to(torch.float32)
for i in range(w1.shape[0]):
mask = topk_ids == i
if mask.sum():
inter_out = native_w8a8_block_fp8_matmul(a_q[mask],
w1[i],
a_s[mask],
w1_s[i],
block_shape,
output_dtype=a.dtype)
act_out = SiluAndMul().forward_native(inter_out)
act_out_q, act_out_s = native_per_token_group_quant_fp8(
act_out, block_k)
act_out = act_out.to(torch.float32)
out[mask] = native_w8a8_block_fp8_matmul(act_out_q,
w2[i],
act_out_s,
w2_s[i],
block_shape,
output_dtype=a.dtype)
return (out.view(B, -1, w2.shape[1]) *
topk_weight.view(B, -1, 1).to(out.dtype)).sum(dim=1)


# Skip all tests if CUDA is not available
pytest.importorskip("torch.cuda")


@pytest.fixture(autouse=True)
def setup_cuda():
torch.set_default_device("cuda")


@pytest.mark.parametrize("num_tokens,d,dtype,group_size,seed",
itertools.product(NUM_TOKENS, D, DTYPES, GROUP_SIZE,
SEEDS))
@torch.inference_mode()
def test_per_token_group_quant_fp8(num_tokens, d, dtype, group_size, seed):
torch.manual_seed(seed)
x = torch.rand(num_tokens, d, dtype=dtype)

ref_out, ref_scale = native_per_token_group_quant_fp8(x, group_size)
out, scale = per_token_group_quant_fp8(x, group_size)

assert torch.allclose(out.to(torch.float32),
ref_out.to(torch.float32),
rtol=0.15)
assert torch.allclose(scale, ref_scale)


@pytest.mark.parametrize("M,N,K,block_size,out_dtype,seed",
itertools.product(M, N, K, BLOCK_SIZE, OUT_DTYPES,
SEEDS))
@torch.inference_mode()
def test_w8a8_block_fp8_matmul(M, N, K, block_size, out_dtype, seed):
torch.manual_seed(seed)
factor_for_scale = 1e-2
fp8_info = torch.finfo(torch.float8_e4m3fn)
fp8_max, fp8_min = fp8_info.max, fp8_info.min

A_fp32 = (torch.rand(M, K, dtype=torch.float32) - 0.5) * 2 * fp8_max
A_fp8 = A_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)

B_fp32 = (torch.rand(N, K, dtype=torch.float32) - 0.5) * 2 * fp8_max
B_fp8 = B_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)

block_n, block_k = block_size[0], block_size[1]
n_tiles = (N + block_n - 1) // block_n
k_tiles = (K + block_k - 1) // block_k

As = torch.rand(M, k_tiles, dtype=torch.float32) * factor_for_scale
Bs = torch.rand(n_tiles, k_tiles, dtype=torch.float32) * factor_for_scale

ref_out = native_w8a8_block_fp8_matmul(A_fp8, B_fp8, As, Bs, block_size,
out_dtype)
out = w8a8_block_fp8_matmul(A_fp8, B_fp8, As, Bs, block_size, out_dtype)

rel_diff = (torch.mean(
torch.abs(out.to(torch.float32) - ref_out.to(torch.float32))) /
torch.mean(torch.abs(ref_out.to(torch.float32))))
assert rel_diff < 0.001


@pytest.mark.parametrize("M,N,K,E,topk,block_size,dtype,seed",
itertools.product(M_moe, N_moe, K_moe, E, TOP_KS,
BLOCK_SIZE, DTYPES, SEEDS))
@torch.inference_mode()
def test_w8a8_block_fp8_fused_moe(M, N, K, E, topk, block_size, dtype, seed):
torch.manual_seed(seed)
factor_for_scale = 1e-2
fp8_info = torch.finfo(torch.float8_e4m3fn)
fp8_max, fp8_min = fp8_info.max, fp8_info.min

a = torch.randn((M, K), dtype=dtype) / 10

w1_bf16 = (torch.rand(
(E, 2 * N, K), dtype=torch.bfloat16) - 0.5) * 2 * fp8_max
w1 = w1_bf16.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
del w1_bf16

w2_bf16 = (torch.rand((E, K, N), dtype=torch.bfloat16) - 0.5) * 2 * fp8_max
w2 = w2_bf16.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
del w2_bf16

block_n, block_k = block_size[0], block_size[1]
n_tiles_w1 = (2 * N + block_n - 1) // block_n
n_tiles_w2 = (K + block_n - 1) // block_n
k_tiles_w1 = (K + block_k - 1) // block_k
k_tiles_w2 = (N + block_k - 1) // block_k

w1_s = torch.rand(
(E, n_tiles_w1, k_tiles_w1), dtype=torch.float32) * factor_for_scale
w2_s = torch.rand(
(E, n_tiles_w2, k_tiles_w2), dtype=torch.float32) * factor_for_scale

score = torch.randn((M, E), dtype=dtype)

out = fused_moe(
a,
w1,
w2,
score,
topk,
renormalize=False,
use_fp8_w8a8=True,
w1_scale=w1_s,
w2_scale=w2_s,
block_shape=block_size,
)
ref_out = torch_w8a8_block_fp8_moe(a, w1, w2, w1_s, w2_s, score, topk,
block_size)

print(f"{out.sum()=}")
print(f"{ref_out.sum()=}")

rel_diff = (torch.mean(
torch.abs(out.to(torch.float32) - ref_out.to(torch.float32))) /
torch.mean(torch.abs(ref_out.to(torch.float32))))
assert rel_diff < 0.03
14 changes: 7 additions & 7 deletions vllm/config.py
Original file line number Diff line number Diff line change
Expand Up @@ -161,7 +161,7 @@ class ModelConfig:
override default pooling config for the pooling model.
logits_processor_pattern: Optional regex pattern specifying valid
logits processor qualified names that can be passed with the
`logits_processors` extra completion argument. Defaults to None,
`logits_processors` extra completion argument. Defaults to None,
which allows no processors.
generation_config: Configuration parameter file for generation.
"""
Expand Down Expand Up @@ -364,7 +364,7 @@ def __init__(self,
def maybe_pull_model_tokenizer_for_s3(self, model: str,
tokenizer: str) -> None:
"""
Pull the model config or tokenizer to a temporary
Pull the model config or tokenizer to a temporary
directory in case of S3.
Args:
Expand Down Expand Up @@ -866,14 +866,14 @@ def try_get_generation_config(self) -> Dict[str, Any]:

def get_diff_sampling_param(self) -> Dict[str, Any]:
"""
This method returns a dictionary containing the parameters
that differ from the default sampling parameters, but only
if `generation_config` is set. If `generation_config` is not
This method returns a dictionary containing the parameters
that differ from the default sampling parameters, but only
if `generation_config` is set. If `generation_config` is not
set, an empty dictionary is returned.
Returns:
Dict[str, Any]: A dictionary with the differing sampling
parameters if `generation_config` is set, otherwise an
Dict[str, Any]: A dictionary with the differing sampling
parameters if `generation_config` is set, otherwise an
empty dictionary.
"""
if self.generation_config is None:
Expand Down
Loading

0 comments on commit 2072924

Please sign in to comment.