-
-
Notifications
You must be signed in to change notification settings - Fork 5.2k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Speculative Decoding] Medusa Implementation with Top-1 proposer (#4978)
- Loading branch information
1 parent
d3a2451
commit 2416b26
Showing
9 changed files
with
587 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,226 @@ | ||
"""This docstring details important information on the testing methodology. | ||
Most of the tests rely on "greedy equality", where we expect the output of | ||
speculative decoding on a sequence to exactly match the output of normal non- | ||
speculative decoding. | ||
Since speculative decoding with rejection sampling guarantees that the output | ||
distribution matches the target model's output distribution (up to hardware | ||
numerics, see https://arxiv.org/pdf/2302.01318.pdf), we can expect greedy | ||
equality. | ||
However, we still need to verify below scenario could be passed: | ||
* Batch size 1 greedy equality | ||
* Batch size >1 greedy equality | ||
* Test greedy equality under preemption | ||
* Test greedy equality under various number of speculative tokens. | ||
With those tests, we can say at least, Medusa would not break the | ||
correctess for the target model outputs. | ||
""" | ||
|
||
import pytest | ||
|
||
from .conftest import run_greedy_equality_correctness_test | ||
|
||
# main model | ||
# lmsys/vicuna-7b-v1.3 was to be used but it's causing | ||
# OOM in CI pipeline, so using a smaller model. | ||
MAIN_MODEL = "JackFram/llama-68m" | ||
|
||
# speculative model | ||
SPEC_MODEL = "abhigoyal/vllm-medusa-llama-68m-random" | ||
|
||
# max. number of speculative tokens: this corresponds to | ||
# num_heads in the config.json of the speculator model. | ||
MAX_SPEC_TOKENS = 5 | ||
|
||
# precision | ||
PRECISION = "float32" | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"common_llm_kwargs", | ||
[{ | ||
# Skip cuda graph recording for fast test. | ||
"enforce_eager": True, | ||
# Required for spec decode. | ||
"use_v2_block_manager": True, | ||
# Print spec metrics. | ||
"disable_log_stats": False, | ||
# Precision | ||
"dtype": PRECISION, | ||
# Main model | ||
"model": MAIN_MODEL, | ||
}]) | ||
@pytest.mark.parametrize("per_test_common_llm_kwargs", [{}]) | ||
@pytest.mark.parametrize("baseline_llm_kwargs", [{}]) | ||
@pytest.mark.parametrize("test_llm_kwargs", [ | ||
{ | ||
"speculative_model": SPEC_MODEL, | ||
"num_speculative_tokens": MAX_SPEC_TOKENS, | ||
}, | ||
]) | ||
@pytest.mark.parametrize("output_len", [ | ||
128, | ||
]) | ||
@pytest.mark.parametrize("batch_size", [1, 32]) | ||
@pytest.mark.parametrize("seed", [1]) | ||
def test_mlp_e2e_greedy_correctness(baseline_llm_generator, test_llm_generator, | ||
batch_size: int, output_len: int): | ||
"""Verify greedy equality with different batch size.""" | ||
run_greedy_equality_correctness_test(baseline_llm_generator, | ||
test_llm_generator, | ||
batch_size, | ||
max_output_len=output_len, | ||
force_output_len=True) | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"common_llm_kwargs", | ||
[{ | ||
"block_size": 8, | ||
# 2 for small prompt, 256//8 for generated. | ||
"num_gpu_blocks_override": 2 + 256 // 8, | ||
"max_model_len": (2 + 256 // 8) * 8, | ||
# Skip cuda graph recording for fast test. | ||
"enforce_eager": True, | ||
# Required for spec decode. | ||
"use_v2_block_manager": True, | ||
# Precision | ||
"dtype": PRECISION, | ||
# Main model | ||
"model": MAIN_MODEL, | ||
}]) | ||
@pytest.mark.parametrize("per_test_common_llm_kwargs", [{}]) | ||
@pytest.mark.parametrize("baseline_llm_kwargs", [{}]) | ||
@pytest.mark.parametrize("test_llm_kwargs", [ | ||
{ | ||
"speculative_model": SPEC_MODEL, | ||
"num_speculative_tokens": MAX_SPEC_TOKENS, | ||
}, | ||
]) | ||
@pytest.mark.parametrize( | ||
"output_len", | ||
[ | ||
# Use small output len for fast test. | ||
128, | ||
]) | ||
@pytest.mark.parametrize("batch_size", [4]) | ||
@pytest.mark.parametrize("seed", [1]) | ||
def test_mlp_e2e_greedy_correctness_with_preemption(baseline_llm_generator, | ||
test_llm_generator, | ||
batch_size: int, | ||
output_len: int): | ||
"""Verify greedy equality, even when some sequences are preempted mid- | ||
generation. | ||
""" | ||
run_greedy_equality_correctness_test(baseline_llm_generator, | ||
test_llm_generator, | ||
batch_size, | ||
max_output_len=output_len, | ||
force_output_len=True) | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"common_llm_kwargs", | ||
[{ | ||
# Skip cuda graph recording for fast test. | ||
"enforce_eager": True, | ||
# Required for spec decode. | ||
"use_v2_block_manager": True, | ||
# Precision | ||
"dtype": PRECISION, | ||
# Main model | ||
"model": MAIN_MODEL, | ||
}]) | ||
@pytest.mark.parametrize("per_test_common_llm_kwargs", [{}]) | ||
@pytest.mark.parametrize("baseline_llm_kwargs", [{}]) | ||
@pytest.mark.parametrize( | ||
"test_llm_kwargs", | ||
[ | ||
{ | ||
"speculative_model": SPEC_MODEL, | ||
"num_speculative_tokens": k, | ||
} | ||
# Try a range of num. speculative tokens | ||
for k in range(1, 1 + MAX_SPEC_TOKENS) | ||
]) | ||
@pytest.mark.parametrize("batch_size", [2]) | ||
@pytest.mark.parametrize( | ||
"output_len", | ||
[ | ||
# Use smaller output len for fast test. | ||
32, | ||
]) | ||
@pytest.mark.parametrize("seed", [1]) | ||
def test_mlp_different_k(baseline_llm_generator, test_llm_generator, | ||
batch_size: int, output_len: int): | ||
"""Verify that mlp speculative decoding produces exact equality | ||
to without spec decode with different values of num_speculative_tokens. | ||
""" | ||
run_greedy_equality_correctness_test(baseline_llm_generator, | ||
test_llm_generator, | ||
batch_size, | ||
max_output_len=output_len, | ||
force_output_len=True) | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"common_llm_kwargs", | ||
[{ | ||
# Skip cuda graph recording for fast test. | ||
"enforce_eager": True, | ||
# Required for spec decode. | ||
"use_v2_block_manager": True, | ||
# Precision | ||
"dtype": PRECISION, | ||
# Main model | ||
"model": MAIN_MODEL, | ||
}]) | ||
@pytest.mark.parametrize("per_test_common_llm_kwargs", [{}]) | ||
@pytest.mark.parametrize("baseline_llm_kwargs", [{}]) | ||
@pytest.mark.parametrize("test_llm_kwargs", | ||
[{ | ||
"speculative_model": SPEC_MODEL, | ||
"num_speculative_tokens": MAX_SPEC_TOKENS, | ||
"speculative_disable_by_batch_size": 4 | ||
}]) | ||
@pytest.mark.parametrize("batch_size", [1, 5]) | ||
@pytest.mark.parametrize( | ||
"output_len", | ||
[ | ||
# Use smaller output len for fast test. | ||
32, | ||
]) | ||
@pytest.mark.parametrize("seed", [1]) | ||
def test_mlp_disable_queue(baseline_llm_generator, test_llm_generator, | ||
batch_size: int, output_len: int): | ||
"""Verify that mlp speculative decoding produces exact equality | ||
to without spec decode when speculation is disabled for large | ||
batch sizes. | ||
""" | ||
run_greedy_equality_correctness_test(baseline_llm_generator, | ||
test_llm_generator, | ||
batch_size, | ||
max_output_len=output_len, | ||
force_output_len=True) | ||
|
||
|
||
if __name__ == "__main__": | ||
import pytest | ||
pytest.main([__file__]) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,159 @@ | ||
from typing import Iterable, List, Optional, Tuple | ||
|
||
import torch | ||
import torch.nn as nn | ||
|
||
from vllm.model_executor.layers.logits_processor import LogitsProcessor | ||
from vllm.model_executor.layers.vocab_parallel_embedding import ( | ||
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead) | ||
from vllm.model_executor.model_loader.weight_utils import default_weight_loader | ||
from vllm.model_executor.sampling_metadata import SamplingMetadata | ||
from vllm.sequence import SamplerOutput | ||
from vllm.transformers_utils.configs.medusa import MedusaConfig | ||
|
||
|
||
class ResidualBlock(nn.Module): | ||
|
||
def __init__(self, hidden_size: int, num_layers: int) -> None: | ||
super().__init__() | ||
|
||
self.layers = nn.ModuleList([ | ||
nn.Linear(hidden_size, hidden_size, bias=False) | ||
for _ in range(num_layers) | ||
]) | ||
self.act = nn.SiLU() | ||
|
||
def forward(self, x: torch.Tensor) -> torch.Tensor: | ||
for layer in self.layers: | ||
x = x + self.act(layer(x)) | ||
return x | ||
|
||
|
||
class Medusa(nn.Module): | ||
|
||
def __init__(self, config: MedusaConfig, **_) -> None: | ||
super().__init__() | ||
self.config = config | ||
self.blocks = nn.ModuleList([ | ||
ResidualBlock(hidden_size=self.config.hidden_size, | ||
num_layers=self.config.num_hidden_layers) | ||
for _ in range(self.config.num_heads) | ||
]) | ||
self.orig_vocab_size = config.vocab_size | ||
self.truncated_vocab_size = config.truncated_vocab_size | ||
self.unpadded_vocab_size = self.truncated_vocab_size | ||
|
||
self.lm_heads = nn.ModuleList([ | ||
ParallelLMHead( | ||
self.unpadded_vocab_size, | ||
config.hidden_size, | ||
org_num_embeddings=self.truncated_vocab_size, | ||
padding_size=DEFAULT_VOCAB_PADDING_SIZE, | ||
) for _ in range(self.config.num_heads) | ||
]) | ||
|
||
logit_scale = getattr(config, "logit_scale", 1.0) | ||
self.logits_processor = LogitsProcessor(self.unpadded_vocab_size, | ||
self.truncated_vocab_size, | ||
logit_scale) | ||
|
||
self.token_map = None | ||
|
||
def forward(self, hidden_states: torch.Tensor) -> List[torch.Tensor]: | ||
return [block(hidden_states) for block in self.blocks] | ||
|
||
def compute_logits( | ||
self, hidden_states: List[torch.Tensor], | ||
sampling_metadata: SamplingMetadata) -> List[torch.Tensor]: | ||
logits = [] | ||
|
||
for hs, lm_head in zip(hidden_states, self.lm_heads): | ||
_logits = self.logits_processor(lm_head, hs, sampling_metadata) | ||
|
||
if self.token_map is None: | ||
logits.append(_logits) | ||
else: | ||
logits.append(-torch.inf * torch.ones( | ||
size=(*_logits.shape[:-1], self.orig_vocab_size), | ||
device=_logits.device, | ||
dtype=_logits.dtype)) | ||
|
||
logits[-1][..., self.token_map] = _logits | ||
|
||
return logits | ||
|
||
def sample( | ||
self, | ||
logits: List[torch.Tensor], | ||
sampling_metadata: SamplingMetadata, | ||
) -> List[SamplerOutput]: | ||
logits = torch.stack(logits, dim=0).float() | ||
logprobs = torch.log_softmax(logits, dim=-1) | ||
token_ids = logits.argmax(-1) # support only top-1 for now | ||
probs = torch.softmax(logits, dim=-1) | ||
|
||
token_id_list = [] | ||
token_prob_list = [] | ||
token_logprob_list = [] | ||
|
||
for idx, seq_group in enumerate(sampling_metadata.seq_groups): | ||
token_id_list.append(token_ids[:, seq_group.sample_indices]) | ||
token_prob_list.append(probs[:, seq_group.sample_indices]) | ||
token_logprob_list.append(logprobs[:, seq_group.sample_indices]) | ||
|
||
outputs: List[Optional[SamplerOutput]] = [] | ||
for idx in range(len(sampling_metadata.seq_groups)): | ||
outputs.append( | ||
SamplerOutput( | ||
outputs=None, | ||
sampled_token_probs=token_prob_list[idx].squeeze(1), | ||
logprobs=token_logprob_list[idx].squeeze(1), | ||
sampled_token_ids=token_id_list[idx].squeeze(1), | ||
)) | ||
|
||
return outputs | ||
|
||
def generate_proposals( | ||
self, | ||
previous_hidden_states: torch.Tensor, | ||
sampling_metadata: SamplingMetadata, | ||
) -> List[SamplerOutput]: | ||
return self.sample( | ||
logits=self.compute_logits( | ||
hidden_states=self.forward(previous_hidden_states), | ||
sampling_metadata=sampling_metadata, | ||
), | ||
sampling_metadata=sampling_metadata, | ||
) | ||
|
||
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]): | ||
params_dict = dict(self.named_parameters()) | ||
|
||
weights_map = {} | ||
|
||
for name, loaded_weight in weights: | ||
name = name.replace("medusa_heads.", "") | ||
|
||
if name == "token_map": | ||
if self.truncated_vocab_size < self.orig_vocab_size: | ||
self.token_map = nn.Parameter(loaded_weight, | ||
requires_grad=False) | ||
elif name in params_dict: | ||
weights_map[name] = loaded_weight | ||
|
||
for name, loaded_weight in weights_map.items(): | ||
if "lm_head" in name and self.token_map is not None and\ | ||
loaded_weight.shape[0] > self.token_map.shape[0]: | ||
|
||
loaded_weight = loaded_weight[self.token_map] | ||
|
||
param = params_dict[name] | ||
weight_loader = getattr(param, "weight_loader", | ||
default_weight_loader) | ||
weight_loader(param, loaded_weight) | ||
|
||
if self.token_map is not None: | ||
self.token_map.to(device=self.lm_heads[0].weight.device) | ||
|
||
assert (self.truncated_vocab_size | ||
== self.orig_vocab_size) or (self.token_map is not None) |
Oops, something went wrong.