Skip to content

Commit

Permalink
[Kernel][LoRA]Punica prefill kernels fusion (#11234)
Browse files Browse the repository at this point in the history
Signed-off-by: Jee Jee Li <[email protected]>
Signed-off-by: Abatom <[email protected]>
Co-authored-by: Zhonghua Deng <[email protected]>
  • Loading branch information
jeejeelee and Abatom authored Jan 7, 2025
1 parent 8ceffbf commit b278557
Show file tree
Hide file tree
Showing 11 changed files with 707 additions and 764 deletions.
3 changes: 2 additions & 1 deletion .buildkite/test-pipeline.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -242,7 +242,7 @@ steps:
source_file_dependencies:
- vllm/lora
- tests/lora
command: pytest -v -s lora --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT --ignore=lora/test_long_context.py --ignore=lora/test_chatglm3_tp.py --ignore=lora/test_llama_tp.py
command: pytest -v -s lora --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT --ignore=lora/test_long_context.py --ignore=lora/test_chatglm3_tp.py --ignore=lora/test_llama_tp.py --ignore=lora/test_minicpmv_tp.py
parallelism: 4

- label: "PyTorch Fullgraph Smoke Test" # 9min
Expand Down Expand Up @@ -535,6 +535,7 @@ steps:
# requires multi-GPU testing for validation.
- pytest -v -s -x lora/test_chatglm3_tp.py
- pytest -v -s -x lora/test_llama_tp.py
- pytest -v -s -x lora/test_minicpmv_tp.py


- label: Weight Loading Multiple GPU Test # 33min
Expand Down
77 changes: 0 additions & 77 deletions tests/lora/test_minicpmv.py

This file was deleted.

63 changes: 44 additions & 19 deletions tests/lora/test_minicpmv_tp.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,10 +3,10 @@
import pytest

import vllm
from tests.utils import fork_new_process_for_each_test
from vllm.assets.image import ImageAsset
from vllm.lora.request import LoRARequest

from ..utils import multi_gpu_test
from vllm.platforms import current_platform

MODEL_PATH = "openbmb/MiniCPM-Llama3-V-2_5"

Expand All @@ -17,13 +17,11 @@

IMAGE_ASSETS = [
ImageAsset("stop_sign"),
ImageAsset("cherry_blossom"),
]

# After fine-tuning with LoRA, all generated content should start begin `A`.
EXPECTED_OUTPUT = [
"A red and white stop sign with a Chinese archway in the background featuring red lanterns and gold accents.", # noqa: E501
"A pink cherry blossom tree with a blue sky in the background.",
]


Expand All @@ -50,48 +48,75 @@ def do_sample(llm: vllm.LLM, lora_path: str, lora_id: int) -> List[str]:
# Print the outputs.
generated_texts: List[str] = []
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text.strip()
generated_texts.append(generated_text)
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
print(f"Generated text: {generated_text!r}")
return generated_texts


@multi_gpu_test(num_gpus=2)
@pytest.mark.parametrize("fully_sharded", [True, False])
def test_minicpmv_tp2(minicpmv_lora_files, fully_sharded):
@pytest.mark.xfail(
current_platform.is_rocm(),
reason="MiniCPM-V dependency xformers incompatible with ROCm")
@fork_new_process_for_each_test
def test_minicpmv_lora(minicpmv_lora_files):
llm = vllm.LLM(
MODEL_PATH,
max_num_seqs=2,
enable_lora=True,
max_loras=2,
max_lora_rank=8,
enforce_eager=True,
trust_remote_code=True,
enable_chunked_prefill=True,
)
output1 = do_sample(llm, minicpmv_lora_files, lora_id=1)
for i in range(len(EXPECTED_OUTPUT)):
assert EXPECTED_OUTPUT[i].startswith(output1[i])
output2 = do_sample(llm, minicpmv_lora_files, lora_id=2)
for i in range(len(EXPECTED_OUTPUT)):
assert EXPECTED_OUTPUT[i].startswith(output2[i])


@pytest.mark.xfail(
current_platform.is_rocm(),
reason="MiniCPM-V dependency xformers incompatible with ROCm")
@fork_new_process_for_each_test
def test_minicpmv_tp4_wo_fully_sharded_loras(minicpmv_lora_files):
llm = vllm.LLM(
MODEL_PATH,
enable_lora=True,
max_num_seqs=2,
max_loras=4,
max_lora_rank=64,
tensor_parallel_size=2,
tensor_parallel_size=4,
trust_remote_code=True,
fully_sharded_loras=fully_sharded,
enforce_eager=True,
enable_chunked_prefill=True,
)

output_tp = do_sample(llm, minicpmv_lora_files, lora_id=1)

for i in range(len(EXPECTED_OUTPUT)):
assert EXPECTED_OUTPUT[i].startswith(output_tp[i])


@multi_gpu_test(num_gpus=4)
@pytest.mark.parametrize("fully_sharded", [True, False])
def test_minicpmv_tp4(minicpmv_lora_files, fully_sharded):
@pytest.mark.xfail(
current_platform.is_rocm(),
reason="MiniCPM-V dependency xformers incompatible with ROCm")
@fork_new_process_for_each_test
def test_minicpmv_tp4_fully_sharded_loras(minicpmv_lora_files):
llm = vllm.LLM(
MODEL_PATH,
enable_lora=True,
max_num_seqs=2,
max_loras=4,
max_lora_rank=64,
max_loras=2,
max_lora_rank=8,
tensor_parallel_size=4,
trust_remote_code=True,
fully_sharded_loras=fully_sharded,
fully_sharded_loras=True,
enable_chunked_prefill=True,
)
output_tp = do_sample(llm, minicpmv_lora_files, lora_id=1)
for i in range(len(EXPECTED_OUTPUT)):
assert EXPECTED_OUTPUT[i].startswith(output_tp[i])
output_tp = do_sample(llm, minicpmv_lora_files, lora_id=2)
for i in range(len(EXPECTED_OUTPUT)):
assert EXPECTED_OUTPUT[i].startswith(output_tp[i])
Loading

0 comments on commit b278557

Please sign in to comment.