-
-
Notifications
You must be signed in to change notification settings - Fork 5.2k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[Misc] Kernel Benchmark for RMSNorm
#11241
Merged
Merged
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,262 @@ | ||
import itertools | ||
from typing import Optional, Tuple, Union | ||
|
||
import torch | ||
import triton | ||
from flashinfer.norm import fused_add_rmsnorm, rmsnorm | ||
from torch import nn | ||
|
||
from vllm import _custom_ops as vllm_ops | ||
|
||
|
||
class HuggingFaceRMSNorm(nn.Module): | ||
|
||
def __init__(self, hidden_size: int, eps: float = 1e-6) -> None: | ||
super().__init__() | ||
self.weight = nn.Parameter(torch.ones(hidden_size)) | ||
self.variance_epsilon = eps | ||
|
||
def forward( | ||
self, | ||
x: torch.Tensor, | ||
residual: Optional[torch.Tensor] = None, | ||
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: | ||
orig_dtype = x.dtype | ||
x = x.to(torch.float32) | ||
if residual is not None: | ||
x = x + residual.to(torch.float32) | ||
residual = x.to(orig_dtype) | ||
|
||
variance = x.pow(2).mean(dim=-1, keepdim=True) | ||
x = x * torch.rsqrt(variance + self.variance_epsilon) | ||
x = x.to(orig_dtype) * self.weight | ||
if residual is None: | ||
return x | ||
else: | ||
return x, residual | ||
|
||
|
||
def rmsnorm_naive( | ||
x: torch.Tensor, | ||
weight: torch.Tensor, | ||
residual: Optional[torch.Tensor] = None, | ||
eps: float = 1e-6, | ||
): | ||
naive_norm = HuggingFaceRMSNorm(x.shape[-1], eps=eps) | ||
naive_norm.weight = nn.Parameter(weight) | ||
naive_norm = naive_norm.to(x.device) | ||
|
||
orig_shape = x.shape | ||
x = x.view(-1, x.shape[-1]) | ||
if residual is not None: | ||
residual = residual.view(-1, residual.shape[-1]) | ||
|
||
output = naive_norm(x, residual) | ||
|
||
if isinstance(output, tuple): | ||
output = (output[0].view(orig_shape), output[1].view(orig_shape)) | ||
else: | ||
output = output.view(orig_shape) | ||
return output | ||
|
||
|
||
def rmsnorm_flashinfer( | ||
x: torch.Tensor, | ||
weight: torch.Tensor, | ||
residual: Optional[torch.Tensor] = None, | ||
eps: float = 1e-6, | ||
): | ||
orig_shape = x.shape | ||
x = x.view(-1, x.shape[-1]) | ||
if residual is not None: | ||
residual = residual.view(-1, residual.shape[-1]) | ||
|
||
if residual is not None: | ||
fused_add_rmsnorm(x, residual, weight, eps) | ||
output = (x, residual) | ||
else: | ||
output = rmsnorm(x, weight, eps) | ||
|
||
if isinstance(output, tuple): | ||
output = (output[0].view(orig_shape), output[1].view(orig_shape)) | ||
else: | ||
output = output.view(orig_shape) | ||
return output | ||
|
||
|
||
def rmsnorm_vllm( | ||
x: torch.Tensor, | ||
weight: torch.Tensor, | ||
residual: Optional[torch.Tensor] = None, | ||
eps: float = 1e-6, | ||
): | ||
orig_shape = x.shape | ||
x = x.view(-1, x.shape[-1]) | ||
if residual is not None: | ||
residual = residual.view(-1, residual.shape[-1]) | ||
|
||
if residual is not None: | ||
vllm_ops.fused_add_rms_norm(x, residual, weight, eps) | ||
output = (x, residual) | ||
else: | ||
out = torch.empty_like(x) | ||
vllm_ops.rms_norm(out, x, weight, eps) | ||
output = out | ||
|
||
if isinstance(output, tuple): | ||
output = (output[0].view(orig_shape), output[1].view(orig_shape)) | ||
else: | ||
output = output.view(orig_shape) | ||
return output | ||
|
||
|
||
def calculate_diff(batch_size, seq_len, hidden_size, use_residual=True): | ||
dtype = torch.bfloat16 | ||
x = torch.randn(batch_size, | ||
seq_len, | ||
hidden_size, | ||
dtype=dtype, | ||
device="cuda") | ||
weight = torch.ones(hidden_size, dtype=dtype, device="cuda") | ||
residual = torch.randn_like(x) if use_residual else None | ||
|
||
output_naive = rmsnorm_naive( | ||
x.clone(), weight, | ||
residual.clone() if residual is not None else None) | ||
output_flashinfer = rmsnorm_flashinfer( | ||
x.clone(), weight, | ||
residual.clone() if residual is not None else None) | ||
output_vllm = rmsnorm_vllm( | ||
x.clone(), weight, | ||
residual.clone() if residual is not None else None) | ||
|
||
if use_residual: | ||
output_naive = output_naive[0] | ||
output_flashinfer = output_flashinfer[0] | ||
output_vllm = output_vllm[0] | ||
|
||
print(f"Naive output={output_naive}") | ||
print(f"FlashInfer output={output_flashinfer}") | ||
print(f"VLLM output={output_vllm}") | ||
|
||
if torch.allclose(output_naive, output_flashinfer, atol=1e-2, | ||
rtol=1e-2) and torch.allclose( | ||
output_naive, output_vllm, atol=1e-2, rtol=1e-2): | ||
print("✅ All implementations match") | ||
else: | ||
print("❌ Implementations differ") | ||
|
||
|
||
batch_size_range = [2**i for i in range(0, 7, 2)] | ||
seq_length_range = [2**i for i in range(6, 11, 1)] | ||
head_num_range = [32, 48] | ||
configs = list( | ||
itertools.product(head_num_range, batch_size_range, seq_length_range)) | ||
|
||
|
||
def get_benchmark(use_residual): | ||
|
||
@triton.testing.perf_report( | ||
triton.testing.Benchmark( | ||
x_names=["head_num", "batch_size", "seq_len"], | ||
x_vals=[list(_) for _ in configs], | ||
line_arg="provider", | ||
line_vals=["huggingface", "flashinfer", "vllm"], | ||
line_names=["HuggingFace", "FlashInfer", "vLLM"], | ||
styles=[("blue", "-"), ("green", "-"), ("red", "-")], | ||
ylabel="us", | ||
plot_name= | ||
f"rmsnorm-perf-{'with' if use_residual else 'without'}-residual", | ||
args={}, | ||
)) | ||
def benchmark(head_num, batch_size, seq_len, provider): | ||
dtype = torch.bfloat16 | ||
hidden_size = head_num * 128 # assuming head_dim = 128 | ||
|
||
x = torch.randn(batch_size, | ||
seq_len, | ||
hidden_size, | ||
dtype=dtype, | ||
device="cuda") | ||
weight = torch.ones(hidden_size, dtype=dtype, device="cuda") | ||
residual = torch.randn_like(x) if use_residual else None | ||
|
||
quantiles = [0.5, 0.2, 0.8] | ||
|
||
if provider == "huggingface": | ||
ms, min_ms, max_ms = triton.testing.do_bench( | ||
lambda: rmsnorm_naive( | ||
x.clone(), | ||
weight, | ||
residual.clone() if residual is not None else None, | ||
), | ||
quantiles=quantiles, | ||
) | ||
elif provider == "flashinfer": | ||
ms, min_ms, max_ms = triton.testing.do_bench( | ||
lambda: rmsnorm_flashinfer( | ||
x.clone(), | ||
weight, | ||
residual.clone() if residual is not None else None, | ||
), | ||
quantiles=quantiles, | ||
) | ||
else: | ||
ms, min_ms, max_ms = triton.testing.do_bench( | ||
lambda: rmsnorm_vllm( | ||
x.clone(), | ||
weight, | ||
residual.clone() if residual is not None else None, | ||
), | ||
quantiles=quantiles, | ||
) | ||
|
||
return 1000 * ms, 1000 * max_ms, 1000 * min_ms | ||
|
||
return benchmark | ||
|
||
|
||
if __name__ == "__main__": | ||
import argparse | ||
|
||
parser = argparse.ArgumentParser() | ||
parser.add_argument( | ||
"--batch-size", | ||
type=int, | ||
default=4, | ||
help="Batch size", | ||
) | ||
parser.add_argument( | ||
"--seq-len", | ||
type=int, | ||
default=128, | ||
help="Sequence length", | ||
) | ||
parser.add_argument( | ||
"--hidden-size", | ||
type=int, | ||
default=4096, | ||
help="Hidden size (2nd dimension) of the sequence", | ||
) | ||
parser.add_argument("--use-residual", | ||
action="store_true", | ||
help="Whether to use residual connection") | ||
parser.add_argument( | ||
"--save-path", | ||
type=str, | ||
default="./configs/rmsnorm/", | ||
help="Path to save rmsnorm benchmark results", | ||
) | ||
|
||
args = parser.parse_args() | ||
|
||
# Run correctness test | ||
calculate_diff(batch_size=args.batch_size, | ||
seq_len=args.seq_len, | ||
hidden_size=args.hidden_size, | ||
use_residual=args.use_residual) | ||
|
||
# Get the benchmark function with proper use_residual setting | ||
benchmark = get_benchmark(args.use_residual) | ||
# Run performance benchmark | ||
benchmark.run(print_data=True, save_path=args.save_path) |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Making these configurable through args would be perfect.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
That's a good point! @jeejeelee
Added in 71af57f