Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Misc] Kernel Benchmark for RMSNorm #11241

Merged
merged 5 commits into from
Dec 17, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
262 changes: 262 additions & 0 deletions benchmarks/kernels/benchmark_rmsnorm.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,262 @@
import itertools
from typing import Optional, Tuple, Union

import torch
import triton
from flashinfer.norm import fused_add_rmsnorm, rmsnorm
from torch import nn

from vllm import _custom_ops as vllm_ops


class HuggingFaceRMSNorm(nn.Module):

def __init__(self, hidden_size: int, eps: float = 1e-6) -> None:
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps

def forward(
self,
x: torch.Tensor,
residual: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
orig_dtype = x.dtype
x = x.to(torch.float32)
if residual is not None:
x = x + residual.to(torch.float32)
residual = x.to(orig_dtype)

variance = x.pow(2).mean(dim=-1, keepdim=True)
x = x * torch.rsqrt(variance + self.variance_epsilon)
x = x.to(orig_dtype) * self.weight
if residual is None:
return x
else:
return x, residual


def rmsnorm_naive(
x: torch.Tensor,
weight: torch.Tensor,
residual: Optional[torch.Tensor] = None,
eps: float = 1e-6,
):
naive_norm = HuggingFaceRMSNorm(x.shape[-1], eps=eps)
naive_norm.weight = nn.Parameter(weight)
naive_norm = naive_norm.to(x.device)

orig_shape = x.shape
x = x.view(-1, x.shape[-1])
if residual is not None:
residual = residual.view(-1, residual.shape[-1])

output = naive_norm(x, residual)

if isinstance(output, tuple):
output = (output[0].view(orig_shape), output[1].view(orig_shape))
else:
output = output.view(orig_shape)
return output


def rmsnorm_flashinfer(
x: torch.Tensor,
weight: torch.Tensor,
residual: Optional[torch.Tensor] = None,
eps: float = 1e-6,
):
orig_shape = x.shape
x = x.view(-1, x.shape[-1])
if residual is not None:
residual = residual.view(-1, residual.shape[-1])

if residual is not None:
fused_add_rmsnorm(x, residual, weight, eps)
output = (x, residual)
else:
output = rmsnorm(x, weight, eps)

if isinstance(output, tuple):
output = (output[0].view(orig_shape), output[1].view(orig_shape))
else:
output = output.view(orig_shape)
return output


def rmsnorm_vllm(
x: torch.Tensor,
weight: torch.Tensor,
residual: Optional[torch.Tensor] = None,
eps: float = 1e-6,
):
orig_shape = x.shape
x = x.view(-1, x.shape[-1])
if residual is not None:
residual = residual.view(-1, residual.shape[-1])

if residual is not None:
vllm_ops.fused_add_rms_norm(x, residual, weight, eps)
output = (x, residual)
else:
out = torch.empty_like(x)
vllm_ops.rms_norm(out, x, weight, eps)
output = out

if isinstance(output, tuple):
output = (output[0].view(orig_shape), output[1].view(orig_shape))
else:
output = output.view(orig_shape)
return output


def calculate_diff(batch_size, seq_len, hidden_size, use_residual=True):
dtype = torch.bfloat16
x = torch.randn(batch_size,
seq_len,
hidden_size,
dtype=dtype,
device="cuda")
weight = torch.ones(hidden_size, dtype=dtype, device="cuda")
residual = torch.randn_like(x) if use_residual else None

output_naive = rmsnorm_naive(
x.clone(), weight,
residual.clone() if residual is not None else None)
output_flashinfer = rmsnorm_flashinfer(
x.clone(), weight,
residual.clone() if residual is not None else None)
output_vllm = rmsnorm_vllm(
x.clone(), weight,
residual.clone() if residual is not None else None)

if use_residual:
output_naive = output_naive[0]
output_flashinfer = output_flashinfer[0]
output_vllm = output_vllm[0]

print(f"Naive output={output_naive}")
print(f"FlashInfer output={output_flashinfer}")
print(f"VLLM output={output_vllm}")

if torch.allclose(output_naive, output_flashinfer, atol=1e-2,
rtol=1e-2) and torch.allclose(
output_naive, output_vllm, atol=1e-2, rtol=1e-2):
print("✅ All implementations match")
else:
print("❌ Implementations differ")


batch_size_range = [2**i for i in range(0, 7, 2)]
seq_length_range = [2**i for i in range(6, 11, 1)]
head_num_range = [32, 48]
configs = list(
itertools.product(head_num_range, batch_size_range, seq_length_range))


def get_benchmark(use_residual):

@triton.testing.perf_report(
triton.testing.Benchmark(
x_names=["head_num", "batch_size", "seq_len"],
x_vals=[list(_) for _ in configs],
line_arg="provider",
line_vals=["huggingface", "flashinfer", "vllm"],
line_names=["HuggingFace", "FlashInfer", "vLLM"],
styles=[("blue", "-"), ("green", "-"), ("red", "-")],
ylabel="us",
plot_name=
f"rmsnorm-perf-{'with' if use_residual else 'without'}-residual",
args={},
))
def benchmark(head_num, batch_size, seq_len, provider):
dtype = torch.bfloat16
hidden_size = head_num * 128 # assuming head_dim = 128

x = torch.randn(batch_size,
seq_len,
hidden_size,
dtype=dtype,
device="cuda")
weight = torch.ones(hidden_size, dtype=dtype, device="cuda")
residual = torch.randn_like(x) if use_residual else None

quantiles = [0.5, 0.2, 0.8]

if provider == "huggingface":
ms, min_ms, max_ms = triton.testing.do_bench(
lambda: rmsnorm_naive(
x.clone(),
weight,
residual.clone() if residual is not None else None,
),
quantiles=quantiles,
)
elif provider == "flashinfer":
ms, min_ms, max_ms = triton.testing.do_bench(
lambda: rmsnorm_flashinfer(
x.clone(),
weight,
residual.clone() if residual is not None else None,
),
quantiles=quantiles,
)
else:
ms, min_ms, max_ms = triton.testing.do_bench(
lambda: rmsnorm_vllm(
x.clone(),
weight,
residual.clone() if residual is not None else None,
),
quantiles=quantiles,
)

return 1000 * ms, 1000 * max_ms, 1000 * min_ms

return benchmark


if __name__ == "__main__":
import argparse

parser = argparse.ArgumentParser()
parser.add_argument(
"--batch-size",
type=int,
default=4,
help="Batch size",
)
parser.add_argument(
"--seq-len",
type=int,
default=128,
help="Sequence length",
)
parser.add_argument(
"--hidden-size",
type=int,
default=4096,
help="Hidden size (2nd dimension) of the sequence",
)
parser.add_argument("--use-residual",
action="store_true",
help="Whether to use residual connection")
parser.add_argument(
"--save-path",
type=str,
default="./configs/rmsnorm/",
help="Path to save rmsnorm benchmark results",
)

args = parser.parse_args()

# Run correctness test
calculate_diff(batch_size=args.batch_size,
seq_len=args.seq_len,
hidden_size=args.hidden_size,
use_residual=args.use_residual)

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Making these configurable through args would be perfect.

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

That's a good point! @jeejeelee

Added in 71af57f

# Get the benchmark function with proper use_residual setting
benchmark = get_benchmark(args.use_residual)
# Run performance benchmark
benchmark.run(print_data=True, save_path=args.save_path)
Loading