Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Benchmark] Add benchmark script for CPU offloading #11533

Merged
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
184 changes: 184 additions & 0 deletions benchmarks/benchmark_long_document_qa_throughput.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,184 @@
"""
Offline benchmark to test the long document QA throughput.
Example usage:
# This command run the vllm with 50GB CPU memory for offloading
# The workload samples 8 different prompts with a default input
# length of 20000 tokens, then replicates each prompt 2 times
# in random order.
python benchmark_long_document_qa_throughput.py \
--model meta-llama/Llama-2-7b-chat-hf \
--enable-prefix-caching \
--num-documents 8 \
--repeat-count 2
Commandline arguments:
--num-documents: The number of documents to sample prompts from.
--document-length: The length of each document in tokens.
(Optional, default: 20000)
--output-len: The number of tokens to generate for each prompt.
(Optional, default: 10)
--repeat-count: The number of times to repeat each prompt.
(Optional, default: 2)
--repeat-mode: The mode to repeat prompts. The supported modes are:
- 'random': shuffle the prompts randomly. (Default)
- 'tile': the entire prompt list is repeated in sequence. (Potentially
lowest cache hit)
- 'interleave': each prompt is repeated consecutively before
moving to the next element. (Highest cache hit)
--shuffle-seed: Random seed when the repeat mode is "random".
(Optional, default: 0)
In the meantime, it also supports all the vLLM engine args to initialize the
LLM engine. You can refer to the `vllm.engine.arg_utils.EngineArgs` for more
details.
"""

import dataclasses
import random
import time

from vllm import LLM, SamplingParams
from vllm.engine.arg_utils import EngineArgs
from vllm.utils import FlexibleArgumentParser


def test_long_document_qa(llm=None, sampling_params=None, prompts=None):
"""
Test long document QA with the given prompts and sampling parameters.
Print the time spent in processing all the prompts.
Args:
llm: The language model used for generating responses.
sampling_params: Sampling parameter used to generate the response.
prompts: A list of prompt strings to be processed by the LLM.
"""
start_time = time.time()
llm.generate(prompts, sampling_params=sampling_params)
end_time = time.time()
print(f"Time to execute all requests: {end_time - start_time:.4f} secs")


def repeat_prompts(prompts, repeat_count, mode: str):
"""
Repeat each prompt in the list for a specified number of times.
The order of prompts in the output list depends on the mode.
Args:
prompts: A list of prompts to be repeated.
repeat_count: The number of times each prompt is repeated.
mode: The mode of repetition. Supported modes are:
- 'random': Shuffle the prompts randomly after repetition.
- 'tile': Repeat the entire prompt list in sequence.
Example: [1, 2, 3] -> [1, 2, 3, 1, 2, 3].
- 'interleave': Repeat each prompt consecutively before moving to
the next. Example: [1, 2, 3] -> [1, 1, 2, 2, 3, 3].
Returns:
A list of repeated prompts in the specified order.
Raises:
ValueError: If an invalid mode is provided.
"""
print("Repeat mode: ", mode)
if mode == 'random':
repeated_prompts = prompts * repeat_count
random.shuffle(repeated_prompts)
return repeated_prompts
elif mode == 'tile':
return prompts * repeat_count
elif mode == 'interleave':
repeated_prompts = []
for prompt in prompts:
repeated_prompts.extend([prompt] * repeat_count)
return repeated_prompts
else:
raise ValueError(f"Invalid mode: {mode}, only support "
"'random', 'tile', 'interleave'")


def main(args):
random.seed(args.shuffle_seed)

# Prepare the prompts:
# we append the document id at the beginning to avoid any of the document
# being the prefix of other documents
prompts = [
str(i) + ' '.join(['hi'] * args.document_length)
for i in range(args.num_documents)
]

prompts = repeat_prompts(prompts, args.repeat_count, mode=args.repeat_mode)

warmup_prompts = [
"This is warm up request " + str(i) + \
' '.join(['hi'] * args.document_length)
for i in range(args.num_documents)]

# Create the LLM engine
engine_args = EngineArgs.from_cli_args(args)
llm = LLM(**dataclasses.asdict(engine_args))
sampling_params = SamplingParams(temperature=0, max_tokens=args.output_len)

print("------warm up------")
test_long_document_qa(
llm=llm,
prompts=warmup_prompts,
sampling_params=sampling_params,
)

print("------start generating------")
test_long_document_qa(
llm=llm,
prompts=prompts,
sampling_params=sampling_params,
)


if __name__ == "__main__":
parser = FlexibleArgumentParser(
description=
'Benchmark the performance with or without automatic prefix caching.')

parser.add_argument(
'--document-length',
type=int,
# Roughly the number of tokens for a system paper,
# excluding images
default=20000,
help='Range of input lengths for sampling prompts,'
'specified as "min:max" (e.g., "128:256").')

parser.add_argument('--num-documents',
type=int,
default=8,
help='Range of input lengths for sampling prompts,'
'specified as "min:max" (e.g., "128:256").')

parser.add_argument('--output-len', type=int, default=10)

parser.add_argument('--repeat-count',
type=int,
default=2,
help='Number of times to repeat each prompt')

parser.add_argument("--repeat-mode",
type=str,
default='random',
help='The mode to repeat prompts. The supported '
'modes are "random", "tile", and "interleave". '
'See repeat_prompts() in the source code for details.')

parser.add_argument("--shuffle-seed",
type=int,
default=0,
help='Random seed when the repeat mode is "random"')

parser = EngineArgs.add_cli_args(parser)
args = parser.parse_args()
main(args)
Loading