Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[v1] fix compilation cache #11598

Merged
merged 4 commits into from
Dec 30, 2024
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 13 additions & 2 deletions tests/compile/piecewise/test_toy_llama.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@
initialized randomly with a fixed seed.
"""
from dataclasses import dataclass
from typing import Optional, Tuple
from typing import Any, List, Optional, Tuple

import torch
from torch import nn
Expand Down Expand Up @@ -54,6 +54,16 @@ class LlamaConfig:
tractable_init: bool = False
random_seed: int = 0

def compute_hash(self) -> str:
factors: List[Any] = []
for k, v in self.__dict__.items():
if k == "random_seed":
continue
factors.append((k, v))
factors.sort()
import hashlib
return hashlib.md5(str(factors).encode()).hexdigest()

def __post_init__(self):
assert self.mlp_size >= self.hidden_size

Expand Down Expand Up @@ -263,7 +273,8 @@ def run_model(llama_config,
compilation_config = CompilationConfig(
level=CompilationLevel.NO_COMPILATION, )

vllm_config = VllmConfig(compilation_config=compilation_config)
vllm_config = VllmConfig(compilation_config=compilation_config,
additional_config=llama_config)
with set_current_vllm_config(vllm_config):
model = LlamaModel(config=llama_config,
vllm_config=vllm_config,
Expand Down
22 changes: 13 additions & 9 deletions vllm/compilation/backends.py
Original file line number Diff line number Diff line change
Expand Up @@ -619,21 +619,28 @@ def __init__(self, graph: fx.GraphModule, vllm_config: VllmConfig,
# the entries for different shapes that we need to either
# compile or capture cudagraph
self.concrete_size_entries: Dict[int, ConcreteSizeEntry] = {}
self.to_be_compiled_sizes: Set[int] = self.compile_sizes.union(
self.capture_sizes)

# to_be_compiled_sizes tracks the remaining sizes to compile,
# and updates during the compilation process, so we need to copy it
self.to_be_compiled_sizes: Set[int] = self.compile_sizes.copy()
for shape in self.compile_sizes.union(self.capture_sizes):
self.concrete_size_entries[shape] = ConcreteSizeEntry(
runtime_shape=shape,
need_to_compile=shape in self.compile_sizes,
use_cudagraph=shape in self.capture_sizes,
)

def check_for_ending_compilation(self):
if self.is_last_graph and not self.to_be_compiled_sizes:
# no specific sizes to compile
# save the hash of the inductor graph for the next run
self.compilation_config.inductor_hash_cache.save_to_file()
end_monitoring_torch_compile(self.vllm_config)

def __call__(self, *args) -> Any:
if not self.first_run_finished:
self.first_run_finished = True
# no specific sizes to compile
if self.is_last_graph and not self.to_be_compiled_sizes:
end_monitoring_torch_compile(self.vllm_config)
self.check_for_ending_compilation()
return self.compiled_graph_for_general_shape(*args)

runtime_shape = args[self.sym_shape_indices[0]]
Expand Down Expand Up @@ -662,10 +669,7 @@ def __call__(self, *args) -> Any:

# finished compilations for all required shapes
if self.is_last_graph and not self.to_be_compiled_sizes:

# save the hash of the inductor graph for the next run
self.compilation_config.inductor_hash_cache.save_to_file()
end_monitoring_torch_compile(self.vllm_config)
self.check_for_ending_compilation()

if not entry.use_cudagraph:
return entry.runnable(*args)
Expand Down
45 changes: 42 additions & 3 deletions vllm/config.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,8 +9,8 @@
from dataclasses import dataclass, field, replace
from pathlib import Path
from typing import (TYPE_CHECKING, Any, Callable, ClassVar, Counter, Dict,
Final, List, Literal, Mapping, Optional, Set, Tuple, Type,
Union)
Final, List, Literal, Mapping, Optional, Protocol, Set,
Tuple, Type, Union)

import torch
from pydantic import BaseModel, Field, PrivateAttr
Expand Down Expand Up @@ -75,6 +75,12 @@
PretrainedConfig]]


class SupportsHash(Protocol):

def compute_hash(self) -> str:
...


class ModelConfig:
"""Configuration for the model.

Expand Down Expand Up @@ -2977,6 +2983,10 @@ class VllmConfig:
init=True) # type: ignore
kv_transfer_config: KVTransferConfig = field(default=None,
init=True) # type: ignore
# some opaque config, only used to provide additional information
# for the hash computation, mainly used for testing and debugging.
additional_config: SupportsHash = field(default=None,
init=True) # type: ignore
instance_id: str = ""

def compute_hash(self) -> str:
Expand Down Expand Up @@ -3008,33 +3018,62 @@ def compute_hash(self) -> str:
vllm_factors.append(__version__)
if self.model_config:
vllm_factors.append(self.model_config.compute_hash())
else:
vllm_factors.append("None")
Comment on lines +3021 to +3022
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Why do we need to append "None" now?

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

To be safer, to distinguish:

config 1: None
config 2: hash abc
config 1: hash abc
config 2: None

if self.cache_config:
vllm_factors.append(self.cache_config.compute_hash())
else:
vllm_factors.append("None")
if self.parallel_config:
vllm_factors.append(self.parallel_config.compute_hash())
else:
vllm_factors.append("None")
if self.scheduler_config:
vllm_factors.append(self.scheduler_config.compute_hash())
else:
vllm_factors.append("None")
if self.device_config:
vllm_factors.append(self.device_config.compute_hash())
else:
vllm_factors.append("None")
if self.load_config:
vllm_factors.append(self.load_config.compute_hash())
else:
vllm_factors.append("None")
if self.lora_config:
vllm_factors.append(self.lora_config.compute_hash())
else:
vllm_factors.append("None")
if self.speculative_config:
vllm_factors.append(self.speculative_config.compute_hash())
else:
vllm_factors.append("None")
if self.decoding_config:
vllm_factors.append(self.decoding_config.compute_hash())
else:
vllm_factors.append("None")
if self.observability_config:
vllm_factors.append(self.observability_config.compute_hash())
else:
vllm_factors.append("None")
if self.prompt_adapter_config:
vllm_factors.append(self.prompt_adapter_config.compute_hash())
else:
vllm_factors.append("None")
if self.quant_config:
pass # should be captured by model_config.quantization
if self.compilation_config:
vllm_factors.append(self.compilation_config.compute_hash())
else:
vllm_factors.append("None")
if self.kv_transfer_config:
vllm_factors.append(self.kv_transfer_config.compute_hash())

else:
vllm_factors.append("None")
if self.additional_config:
vllm_factors.append(self.additional_config.compute_hash())
else:
vllm_factors.append("None")
factors.append(vllm_factors)

hash_str = hashlib.md5(str(factors).encode()).hexdigest()[:10]
Expand Down
Loading