Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Speculative Decoding] Medusa Implementation with Top-1 proposer #4978

Merged
merged 18 commits into from
Jul 10, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
226 changes: 226 additions & 0 deletions tests/spec_decode/e2e/test_medusa_correctness.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,226 @@
"""This docstring details important information on the testing methodology.
Most of the tests rely on "greedy equality", where we expect the output of
speculative decoding on a sequence to exactly match the output of normal non-
speculative decoding.
Since speculative decoding with rejection sampling guarantees that the output
distribution matches the target model's output distribution (up to hardware
numerics, see https://arxiv.org/pdf/2302.01318.pdf), we can expect greedy
equality.
However, we still need to verify below scenario could be passed:
* Batch size 1 greedy equality
* Batch size >1 greedy equality
* Test greedy equality under preemption
* Test greedy equality under various number of speculative tokens.
With those tests, we can say at least, Medusa would not break the
correctess for the target model outputs.
"""

import pytest

from .conftest import run_greedy_equality_correctness_test

# main model
# lmsys/vicuna-7b-v1.3 was to be used but it's causing
# OOM in CI pipeline, so using a smaller model.
MAIN_MODEL = "JackFram/llama-68m"

# speculative model
SPEC_MODEL = "abhigoyal/vllm-medusa-llama-68m-random"

# max. number of speculative tokens: this corresponds to
# num_heads in the config.json of the speculator model.
MAX_SPEC_TOKENS = 5

# precision
PRECISION = "float32"


@pytest.mark.parametrize(
"common_llm_kwargs",
[{
# Skip cuda graph recording for fast test.
"enforce_eager": True,
# Required for spec decode.
"use_v2_block_manager": True,
# Print spec metrics.
"disable_log_stats": False,
# Precision
"dtype": PRECISION,
# Main model
"model": MAIN_MODEL,
}])
@pytest.mark.parametrize("per_test_common_llm_kwargs", [{}])
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs", [
{
"speculative_model": SPEC_MODEL,
"num_speculative_tokens": MAX_SPEC_TOKENS,
},
])
@pytest.mark.parametrize("output_len", [
128,
])
@pytest.mark.parametrize("batch_size", [1, 32])
@pytest.mark.parametrize("seed", [1])
def test_mlp_e2e_greedy_correctness(baseline_llm_generator, test_llm_generator,
batch_size: int, output_len: int):
"""Verify greedy equality with different batch size."""
run_greedy_equality_correctness_test(baseline_llm_generator,
test_llm_generator,
batch_size,
max_output_len=output_len,
force_output_len=True)


@pytest.mark.parametrize(
"common_llm_kwargs",
[{
"block_size": 8,
# 2 for small prompt, 256//8 for generated.
"num_gpu_blocks_override": 2 + 256 // 8,
"max_model_len": (2 + 256 // 8) * 8,
# Skip cuda graph recording for fast test.
"enforce_eager": True,
# Required for spec decode.
"use_v2_block_manager": True,
# Precision
"dtype": PRECISION,
# Main model
"model": MAIN_MODEL,
}])
@pytest.mark.parametrize("per_test_common_llm_kwargs", [{}])
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs", [
{
"speculative_model": SPEC_MODEL,
"num_speculative_tokens": MAX_SPEC_TOKENS,
},
])
@pytest.mark.parametrize(
"output_len",
[
# Use small output len for fast test.
128,
])
@pytest.mark.parametrize("batch_size", [4])
@pytest.mark.parametrize("seed", [1])
def test_mlp_e2e_greedy_correctness_with_preemption(baseline_llm_generator,
test_llm_generator,
batch_size: int,
output_len: int):
"""Verify greedy equality, even when some sequences are preempted mid-
generation.
"""
run_greedy_equality_correctness_test(baseline_llm_generator,
test_llm_generator,
batch_size,
max_output_len=output_len,
force_output_len=True)


@pytest.mark.parametrize(
"common_llm_kwargs",
[{
# Skip cuda graph recording for fast test.
"enforce_eager": True,
# Required for spec decode.
"use_v2_block_manager": True,
# Precision
"dtype": PRECISION,
# Main model
"model": MAIN_MODEL,
}])
@pytest.mark.parametrize("per_test_common_llm_kwargs", [{}])
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize(
"test_llm_kwargs",
[
{
"speculative_model": SPEC_MODEL,
"num_speculative_tokens": k,
}
# Try a range of num. speculative tokens
for k in range(1, 1 + MAX_SPEC_TOKENS)
])
@pytest.mark.parametrize("batch_size", [2])
@pytest.mark.parametrize(
"output_len",
[
# Use smaller output len for fast test.
32,
])
@pytest.mark.parametrize("seed", [1])
def test_mlp_different_k(baseline_llm_generator, test_llm_generator,
batch_size: int, output_len: int):
"""Verify that mlp speculative decoding produces exact equality
to without spec decode with different values of num_speculative_tokens.
"""
run_greedy_equality_correctness_test(baseline_llm_generator,
test_llm_generator,
batch_size,
max_output_len=output_len,
force_output_len=True)


@pytest.mark.parametrize(
"common_llm_kwargs",
[{
# Skip cuda graph recording for fast test.
"enforce_eager": True,
# Required for spec decode.
"use_v2_block_manager": True,
# Precision
"dtype": PRECISION,
# Main model
"model": MAIN_MODEL,
}])
@pytest.mark.parametrize("per_test_common_llm_kwargs", [{}])
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
@pytest.mark.parametrize("test_llm_kwargs",
[{
"speculative_model": SPEC_MODEL,
"num_speculative_tokens": MAX_SPEC_TOKENS,
"speculative_disable_by_batch_size": 4
}])
@pytest.mark.parametrize("batch_size", [1, 5])
@pytest.mark.parametrize(
"output_len",
[
# Use smaller output len for fast test.
32,
])
@pytest.mark.parametrize("seed", [1])
def test_mlp_disable_queue(baseline_llm_generator, test_llm_generator,
batch_size: int, output_len: int):
"""Verify that mlp speculative decoding produces exact equality
to without spec decode when speculation is disabled for large
batch sizes.
"""
run_greedy_equality_correctness_test(baseline_llm_generator,
test_llm_generator,
batch_size,
max_output_len=output_len,
force_output_len=True)


if __name__ == "__main__":
import pytest
pytest.main([__file__])
1 change: 1 addition & 0 deletions vllm/model_executor/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -62,6 +62,7 @@
"ArcticForCausalLM": ("arctic", "ArcticForCausalLM"),
"XverseForCausalLM": ("xverse", "XverseForCausalLM"),
"Phi3SmallForCausalLM": ("phi3_small", "Phi3SmallForCausalLM"),
"MedusaModel": ("medusa", "Medusa"),
"MLPSpeculatorPreTrainedModel": ("mlp_speculator", "MLPSpeculator"),
"JambaForCausalLM": ("jamba", "JambaForCausalLM")
}
Expand Down
159 changes: 159 additions & 0 deletions vllm/model_executor/models/medusa.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,159 @@
from typing import Iterable, List, Optional, Tuple

import torch
import torch.nn as nn

from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.vocab_parallel_embedding import (
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.sequence import SamplerOutput
from vllm.transformers_utils.configs.medusa import MedusaConfig


class ResidualBlock(nn.Module):

def __init__(self, hidden_size: int, num_layers: int) -> None:
super().__init__()

self.layers = nn.ModuleList([
nn.Linear(hidden_size, hidden_size, bias=False)
for _ in range(num_layers)
])
self.act = nn.SiLU()

def forward(self, x: torch.Tensor) -> torch.Tensor:
for layer in self.layers:
x = x + self.act(layer(x))
return x


class Medusa(nn.Module):

def __init__(self, config: MedusaConfig, **_) -> None:
super().__init__()
self.config = config
self.blocks = nn.ModuleList([
ResidualBlock(hidden_size=self.config.hidden_size,
num_layers=self.config.num_hidden_layers)
for _ in range(self.config.num_heads)
])
self.orig_vocab_size = config.vocab_size
self.truncated_vocab_size = config.truncated_vocab_size
self.unpadded_vocab_size = self.truncated_vocab_size

self.lm_heads = nn.ModuleList([
ParallelLMHead(
self.unpadded_vocab_size,
config.hidden_size,
org_num_embeddings=self.truncated_vocab_size,
padding_size=DEFAULT_VOCAB_PADDING_SIZE,
) for _ in range(self.config.num_heads)
])

logit_scale = getattr(config, "logit_scale", 1.0)
self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
self.truncated_vocab_size,
logit_scale)

self.token_map = None

def forward(self, hidden_states: torch.Tensor) -> List[torch.Tensor]:
return [block(hidden_states) for block in self.blocks]

def compute_logits(
self, hidden_states: List[torch.Tensor],
sampling_metadata: SamplingMetadata) -> List[torch.Tensor]:
logits = []

for hs, lm_head in zip(hidden_states, self.lm_heads):
_logits = self.logits_processor(lm_head, hs, sampling_metadata)

if self.token_map is None:
logits.append(_logits)
else:
logits.append(-torch.inf * torch.ones(
abhigoyal1997 marked this conversation as resolved.
Show resolved Hide resolved
size=(*_logits.shape[:-1], self.orig_vocab_size),
device=_logits.device,
dtype=_logits.dtype))

logits[-1][..., self.token_map] = _logits

return logits

def sample(
self,
logits: List[torch.Tensor],
sampling_metadata: SamplingMetadata,
) -> List[SamplerOutput]:
logits = torch.stack(logits, dim=0).float()
logprobs = torch.log_softmax(logits, dim=-1)
token_ids = logits.argmax(-1) # support only top-1 for now
probs = torch.softmax(logits, dim=-1)
Comment on lines +90 to +93
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

If we use the lossless rejection sampler, we will have to run vLLM's standard sampling routine here -- the probability distribution must be modified in the same way as the scoring probability distributions, else you will get distributional drift in the output.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Can you please elaborate on the distribution shift? The tokens from the draft model are either accepted or rejected based on target model distribution, right? So even if the tokens from the draft are from a slightly different distribution, the final output should still match the target model distribution due to rejection. Is this understanding wrong or am I missing something?

The issue with using the standard sampling is that it was causing too much overhead. So if we do need to use it, we might need some optimizations there to get some speed-up out of Medusa.

Copy link
Contributor Author

@abhigoyal1997 abhigoyal1997 Jun 5, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

There's one case that I have noticed generates different tokens sometimes (not sure if this is what you are referring to though).
If without Medusa the logits of top-2 tokens have very close values (or same), then with Medusa those values sometimes change a little bit (I don't know why this is happening since Medusa shouldn't affect the output logits of the target model). This causes different tokens to be preferred by the target model, even for greedy sampling, depending on how those values change.

These images show this:
Screenshot 2024-06-05 at 6 14 04 PM
Screenshot 2024-06-05 at 6 17 23 PM

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I realised this was happening because of bf16 precision, not seeing any such shift when using fp32.


token_id_list = []
token_prob_list = []
token_logprob_list = []

for idx, seq_group in enumerate(sampling_metadata.seq_groups):
token_id_list.append(token_ids[:, seq_group.sample_indices])
token_prob_list.append(probs[:, seq_group.sample_indices])
token_logprob_list.append(logprobs[:, seq_group.sample_indices])

outputs: List[Optional[SamplerOutput]] = []
for idx in range(len(sampling_metadata.seq_groups)):
outputs.append(
SamplerOutput(
outputs=None,
sampled_token_probs=token_prob_list[idx].squeeze(1),
logprobs=token_logprob_list[idx].squeeze(1),
sampled_token_ids=token_id_list[idx].squeeze(1),
))

return outputs

def generate_proposals(
self,
previous_hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> List[SamplerOutput]:
return self.sample(
logits=self.compute_logits(
hidden_states=self.forward(previous_hidden_states),
sampling_metadata=sampling_metadata,
),
sampling_metadata=sampling_metadata,
)

def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
params_dict = dict(self.named_parameters())

weights_map = {}

for name, loaded_weight in weights:
name = name.replace("medusa_heads.", "")

if name == "token_map":
if self.truncated_vocab_size < self.orig_vocab_size:
self.token_map = nn.Parameter(loaded_weight,
requires_grad=False)
elif name in params_dict:
weights_map[name] = loaded_weight

for name, loaded_weight in weights_map.items():
if "lm_head" in name and self.token_map is not None and\
loaded_weight.shape[0] > self.token_map.shape[0]:

loaded_weight = loaded_weight[self.token_map]

param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)

if self.token_map is not None:
self.token_map.to(device=self.lm_heads[0].weight.device)

assert (self.truncated_vocab_size
== self.orig_vocab_size) or (self.token_map is not None)
Loading
Loading