Skip to content

vriveras/LoftQ

 
 

Repository files navigation

LoftQ_logo LoftQ: LoRA-Fine-Tuning-Aware Quantization

This repo implements LoftQ: LoRA-Fine-Tuning-Aware Quantization.

Overview

A novel quantization framework that simultaneously quantizes an LLM and finds a proper low-rank initialization for LoRA fine-tuning. This framework alternatively apply quantization and SVD to obtain the initialization of the quantized backbone and low-rank adapters.

Main Results

LLAMA-2 on WikiText-2 and GSM8K

Bit WikiText-2 WikiText-2 GSM8K GSM8K
LLAMA-2-7b LLAMA-2-13b LLAMA-2-7b LLAMA-2-13b
16 5.08 5.12 36.9 43.1
4 5.24 5.16 35.0 45.0
3 5.63 5.13 32.9 44.4
2.5 5.78 5.22 31.1 41.1
2.25 6.13 5.45 26.5 38.1
2 7.85 7.69 20.9 25.4

Models are fine-tuned through causal language modeling on training sets and are tested on validation/test sets.

BART-large on CNN/DailyMail and XSum

Bit Rank XSum CNN/DailyMail
Lead-3* 16.30/1.60/11.95 40.42/17.62/36.67
16 16 43.95/20.72/35.68 45.03/21.84/42.15
4 16 44.51/21.14/36.18 43.96/21.06/40.96
2 16 40.81/17.85/32.80 42.52/19.81/39.51
16 8 43.40/20.20/35.20 44.72/21.58/41.84
4 8 44.08/20.72/35.89 43.81/20.95/40.84
2 8 39.63/16.65/31.62 42.24/19.44/29.04

*: Using the first 3 sentences in the document as the summary

DeBERTa-V3-base on GLUE using Normal Float Datatype

Bit Rank MNLI QNLI RTE SST MRPC CoLA QQP STSB SQuAD ANLI
m / mm Acc Acc Acc Acc Acc Mcc P/S Corr EM/F1 Acc
16 16 90.5/90.6 94.0 82.0 95.3 89.5/93.3 69.2 92.4/89.8 91.6/91.1 88.5/92.8 59.8
2 16 84.7/85.1 86.6 61.4 90.2 83.8/88.6 37.4 90.3/86.9 87.1/86.9 81.5/88.6 47.1
2 32 86.0/86.1 89.9 61.7 92.0 83.6/87.2 47.5 91.0/87.9 87.5/87.0 82.9/89.8 49.0

DeBERTa-V3-base on GLUE using Uniform Quantization Datatype

Bit Rank MNLI QNLI RTE SST MRPC CoLA QQP STSB SQuAD
m / mm Acc Acc Acc Acc Acc Mcc P/S Corr Em/F1
16 16 90.5/90.6 94.0 82.0 95.3 89.5/93.3 69.2 92.4/89.8 91.6/91.1 88.5/92.8
2 16 87.3/87.1 90.6 61.1 94.0 87.0/90.6 59.1 90.9/88.0 87.9/87.6 84.4/91.2
2 32 88.0/88.1 92.2 63.2 94.7 87.5/91.2 60.5 91.3/88.3 89.5/89.2 85.2/91.6

LoftQ

We use huggingface 🤗 as our training code scripts. See examples here

We provide the implementation for LoftQ for LLAMA and BART as below. We provide a separate implementation for LoftQ for DeBERTa-V3-base in the glue folder because Huggingface peft module doesn't support quantize the embedding, and bitsandbytes module currently doesn't DeBERTaV3. Please go to glue folder to see more implementation details.

Requirements

We use bitsandbytes to implement the quantization. This package only support CUDA >= 11.0 and does not support CPU. However, we also provide fake quantization for fast and parallel training if GPUs are adequate.

pip install -r requirements.txt

Quantize Models

Given a pre-trained model pretrained_model, simply call

import utils
utils.replace_module(
        pretrained_model
        prename='model',
        allow_name=['q_proj', 'k_proj', 'v_proj', 'out_proj', 'fc1_proj', 'fc2_proj'],
        block_name=['LayerNorm', 'classifier', 'lm_head'],
        reduced_rank=32,
        num_bits=4,
        num_iter=1,
        enable_lora=True,
        num_layers=32,
        empty_init=True,
        quant_method='normal',
        fake_quant=True,
)
  • module: have to inherit nn.Module
  • prename: previous name, used to iteratively obtain parameters name
  • allow_name: allowed nn.Linear to quantize
  • block_name: blocked nn.Linear to quantize
  • reduced_rank: low-rank rank
  • num_bits: low-precision bits. 2,4,8 as expected, float number between (2, 4) enables mixed precision
  • num_iter: alternating steps
  • enable_lora: whether enable lora part in forward pass
  • num_layers: total number of layers. can be obtained by the model config file
  • empty_init: True for the first time decomposition, False for loading model from checkpoints
  • quant_method: choose in ['normal', 'uniform'], other quantization method not supported
  • fake_quant: True for fake quantization where values change but memory not saved; False for real quant

Examples of quantizing LLAMA-2, BART, DeBERTa-V3 are in quantize.py.

Download Quantized Model

We provide quantized models with LoRA adapters obtained by LoftQ. These models are available on https://huggingface.co/LoftQ. To use these models, for example, a 2-bit 64-rank LLAMA-2-13b, call

import torch
from transformers import AutoModelForCausalLM, BitsAndBytesConfig
model = AutoModelForCausalLM.from_pretrained(
                'LoftQ/Llama-2-13b-hf-bit2-rank64',
                torch_dtype=torch.float16,
                low_cpu_mem_usage=True,
                load_in_4bit=True,
                quantization_config=BitsAndBytesConfig(
                    load_in_4bit=True,
                    llm_int8_has_fp16_weight=False,
                    bnb_4bit_compute_dtype=torch.float16,
                    bnb_4bit_use_double_quant=False,
                    bnb_4bit_quant_type='nf4',
                ),
            )

Training Files

  • GLUE: glue/run_glue.py
  • Question Answering: glue/run_qa.py
  • Summarization: train_summarization.py
  • WikiText-2: train_clm.py
  • GSM8K: train_gsm8k.py

Example scripts are in scripts.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 98.0%
  • Shell 2.0%