Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

AddTRUST_REMOTE_CODE env var #85

Merged
merged 2 commits into from
Jun 21, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions config.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
import os

TRUST_REMOTE_CODE = os.getenv("TRUST_REMOTE_CODE", False)
19 changes: 13 additions & 6 deletions meta.py
Original file line number Diff line number Diff line change
@@ -1,22 +1,29 @@
from transformers import AutoConfig

from config import TRUST_REMOTE_CODE


class Meta:
config: AutoConfig

def __init__(self, model_path: str, model_name: str, use_sentence_transformer_vectorizer: bool):
def __init__(
self,
model_path: str,
model_name: str,
use_sentence_transformer_vectorizer: bool,
):
if use_sentence_transformer_vectorizer:
self.config = {"model_name": model_name, "model_type": None}
else:
self.config = AutoConfig.from_pretrained(model_path).to_dict()
self.config = AutoConfig.from_pretrained(
model_path, trust_remote_code=TRUST_REMOTE_CODE
).to_dict()

def get(self):
return {
'model': self.config
}
return {"model": self.config}

def get_model_type(self):
return self.config['model_type']
return self.config["model_type"]

def get_architecture(self):
architecture = None
Expand Down
1 change: 1 addition & 0 deletions requirements-test.txt
Original file line number Diff line number Diff line change
Expand Up @@ -9,4 +9,5 @@ sentence-transformers==2.6.1
optimum==1.17.1
onnxruntime==1.17.1
onnx==1.15.0
numpy==1.26.4
pytest
1 change: 1 addition & 0 deletions requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -8,3 +8,4 @@ sentence-transformers==2.6.1
optimum==1.17.1
onnxruntime==1.17.1
onnx==1.15.0
numpy==1.26.4
38 changes: 18 additions & 20 deletions vectorizer.py
Original file line number Diff line number Diff line change
@@ -1,24 +1,21 @@
import asyncio
from concurrent.futures import ThreadPoolExecutor
import math
from concurrent.futures import ThreadPoolExecutor
from pathlib import Path
from typing import Optional

import nltk
import torch
import torch.nn.functional as F
from pathlib import Path
import nltk
from nltk.tokenize import sent_tokenize
from optimum.onnxruntime import ORTModelForFeatureExtraction
from pydantic import BaseModel
from transformers import (
AutoModel,
AutoTokenizer,
T5ForConditionalGeneration,
T5Tokenizer,
DPRContextEncoder,
DPRQuestionEncoder,
)
from sentence_transformers import SentenceTransformer
from optimum.onnxruntime import ORTModelForFeatureExtraction
from transformers import (AutoModel, AutoTokenizer, DPRContextEncoder,
DPRQuestionEncoder, T5ForConditionalGeneration,
T5Tokenizer)

from config import TRUST_REMOTE_CODE

# limit transformer batch size to limit parallel inference, otherwise we run
# into memory problems
Expand Down Expand Up @@ -78,8 +75,9 @@ class ONNXVectorizer:

def __init__(self, model_path) -> None:
onnx_path = Path(model_path)
self.model = ORTModelForFeatureExtraction.from_pretrained(onnx_path, file_name="model_quantized.onnx")
self.tokenizer = AutoTokenizer.from_pretrained(onnx_path)
self.model = ORTModelForFeatureExtraction.from_pretrained(onnx_path, file_name="model_quantized.onnx",
trust_remote_code=TRUST_REMOTE_CODE)
self.tokenizer = AutoTokenizer.from_pretrained(onnx_path, trust_remote_code=TRUST_REMOTE_CODE)

def mean_pooling(self, model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
Expand Down Expand Up @@ -179,11 +177,11 @@ def __init__(self, cuda_support: bool, cuda_core: str):
self.cuda_core = cuda_core

def create_tokenizer(self, model_path):
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
self.tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=TRUST_REMOTE_CODE)
return self.tokenizer

def create_model(self, model_path):
self.model = AutoModel.from_pretrained(model_path)
self.model = AutoModel.from_pretrained(model_path, trust_remote_code=TRUST_REMOTE_CODE)
return self.model

def get_embeddings(self, batch_results):
Expand Down Expand Up @@ -236,9 +234,9 @@ def __init__(self, architecture: str, cuda_support: bool, cuda_core: str):

def create_model(self, model_path):
if self.architecture == "DPRQuestionEncoder":
self.model = DPRQuestionEncoder.from_pretrained(model_path)
self.model = DPRQuestionEncoder.from_pretrained(model_path, trust_remote_code=TRUST_REMOTE_CODE)
else:
self.model = DPRContextEncoder.from_pretrained(model_path)
self.model = DPRContextEncoder.from_pretrained(model_path, trust_remote_code=TRUST_REMOTE_CODE)
return self.model

def get_batch_results(self, tokens, text):
Expand All @@ -259,11 +257,11 @@ def __init__(self, cuda_support: bool, cuda_core: str):
self.cuda_core = cuda_core

def create_model(self, model_path):
self.model = T5ForConditionalGeneration.from_pretrained(model_path)
self.model = T5ForConditionalGeneration.from_pretrained(model_path, trust_remote_code=TRUST_REMOTE_CODE)
return self.model

def create_tokenizer(self, model_path):
self.tokenizer = T5Tokenizer.from_pretrained(model_path)
self.tokenizer = T5Tokenizer.from_pretrained(model_path, trust_remote_code=TRUST_REMOTE_CODE)
return self.tokenizer

def get_embeddings(self, batch_results):
Expand Down
Loading