Run your models trained using Cloud Annotations with python.
Currently, python-tflite.py
supports using Mobilenet-V1 SSD models trained using Cloud Annotations.
Summary Information
Image 7 of 9.
Inference time: 0.15027356147766113
----------
Inference Summary:
Highest Score: 0.9407029747962952
Highest Scoring Box: [0.60926155 0.47011317 0.67576766 0.56898813]
----------
Image shape: (563, 1000, 3)
Boxes shape: (1917, 4)
Classes shape: (1917,)
Scores shape: (1917,)
['plate: 94%']
Image Saved
==========
Saved Image:
Note: to find a list of all models trained do:
cacli list
To use a custom model, perform
cacli download <model_name>
For example, if the downloaded files were saved to /path/to/<model_name>
:
- Our tflite model is stored in
<model_name>/model_android/model.tflite
- Our tflite anchors file is stored in
<model_name>/model_android/anchors.json
- Our tflite labels file is stored in
<model_name>/model_android/labels.json
cd examples/tflite_interpreter/basic/
python python-tflite.py --MODEL_DIR /path/to/<model_name>/model_android
This script calls the tflite model interpreter for inference on all .jpg files inside the directory PATH_TO_TEST_IMAGES_DIR
.
Similary the output .jpg files are storesd in PATH_TO_OUTPUT_DIR
.
We can also specify the minimum confidence (score) for a given detection box to be displayed with MINIMUM_CONFIDENCE
.
Finally:
python python-tflite.py \
--MODEL_DIR /path/to/<model_name>/model_android \
--PATH_TO_TEST_IMAGES_DIR /path/to/test/images \
--PATH_TO_OUTPUT_DIR /path/to/output/images \
--MINIMUM_CONFIDENCE 0.01
These instructions will get you a copy of the project up and running on your local machine for development and testing purposes.
Install the required packages in requirement.txt
Creating a new virtual environement is recommended.
conda create -n object_detection python=3.7
conda activate object_detection
Git clone the repo and change directory into it. Then pip install the packages in requirement.txt
.
cd directory/you/want/to/clone/into
git clone https://github.com/cloud-annotations/object-detection-python.git
cd object-detection-python
pip install -r requirement.txt
I have supplied a test model and some test images. This should output the images with detection boxes and labels in jpg format in 'examples/tflite_interpreter/basic/model/output'
cd examples/tflite_interpreter/basic/
python python-tflite.py
This project is licensed under the MIT License - see the LICENSE.md file for details.