-
Notifications
You must be signed in to change notification settings - Fork 5
An implementation of HPL-AI Mixed-Precision Benchmark based on hpl-2.3
License
wu-kan/HPL-AI
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
#!/bin/bash ############################################################## # # HPL-AI Mixed-Precision Benchmark v2.3d -- April 23, 2021 # ############################################################## # # Check out <https://wu-kan.cn/_posts/2021-03-14-HPL-AI/> for # the full document and the latest information. # ############################################################## # # A quick start to build and run a few tests via spack: # # git clone https://github.com/SYSU-SCC/sysu-scc-spack-repo # spack repo add --scope=site sysu-scc-spack-repo # spack install sysu-scc-spack-repo.hpl-ai # spack load hpl-ai # cp `spack location --install-dir hpl-ai`/bin/HPL.dat HPL.dat # mpirun -n 4 xhpl_ai # ############################################################## # # build from source: # # First the following softwares are required on your system: # C&C++ compiler, autoconf, autoconf-archive, automake, mpi, # blas, blaspp # # You can easily install and load the requirements via spack # <https://github.com/spack/spack/releases/tag/v0.16.1>. # # I just tested with the followings, while other versions or # libraries might work as well: spack unload -a spack load [email protected] spack load [email protected]%[email protected] spack load [email protected]%[email protected] spack load [email protected]%[email protected] spack load [email protected]%[email protected] spack load blaspp%[email protected]+openmp \ ^openblas%[email protected] threads=openmp # Then boostrap the configuration files by typing: autoreconf -ivf # The user is given the opportunity to compile the software # with some specific compile options: # # CPPFLAGS=" -DHPLAI_T_AFLOAT=double " # # CPPFLAGS=" -DHPLAI_DEVICE_BLASPP_GEMM " # # CPPFLAGS=" -DHPLAI_DEVICE_BLASPP_TRSM " # # CPPFLAGS=" -DHPLAI_GEN_BLASPP_TRSM " # (generic trsm had not been implemented in [email protected] # # CPPFLAGS=" -DHPL_COPY_L " # # CPPFLAGS=" -DHPL_CALL_CBLAS " # # CPPFLAGS=" -DHPL_CALL_VSIPL " # (deperated # # CPPFLAGS=" -DHPL_DETAILED_TIMING " # (deperated # # To configure the build and prepare for compilation run: if true; then ./configure else # Note: to use device blaspp routines, you may need to # enable device support of blaspp: # # spack load blaspp%[email protected]+openmp+cuda # # and then: # ./configure \ LIBS=" -lcudart -lcublas " \ CPPFLAGS=" -DBLASPP_WITH_CUBLAS \ -DHPLAI_DEVICE_BLASPP_GEMM \ -DHPLAI_DEVICE_BLASPP_TRSM " fi # Then compile: make -j # The configuration file must be called HPL.dat. # # You can copy the configuration file from the original HPL, # or create a configuration file anew. # # Most of the performance parameters can be tuned. if true; then cat >HPL.dat <<EOF HPLinpack and HPL-AI benchmark input file National Supercomputer Center in Guangzhou, Sun Yat-sen University HPL.out output file name (if any) 6 device out (6=stdout,7=stderr,file) 1 # of problems sizes (N) 16384 131072 Ns 2 # of NBs 192 384 4096 NBs 0 PMAP process mapping (0=Row-,1=Column-major) 1 # of process grids (P x Q) 2 Ps 2 Qs 16.0 threshold 1 # of panel fact 2 1 0 PFACTs (0=left, 1=Crout, 2=Right) 1 # of recursive stopping criterium 2 8 NBMINs (>= 1) 1 # of panels in recursion 2 NDIVs 1 # of recursive panel fact. 2 1 0 RFACTs (0=left, 1=Crout, 2=Right) 1 # of broadcast 0 2 BCASTs (0=1rg,1=1rM,2=2rg,3=2rM,4=Lng,5=LnM) 1 # of lookahead depth 1 DEPTHs (>=0) 1 SWAP (0=bin-exch,1=long,2=mix) 192 swapping threshold 1 L1 in (0=transposed,1=no-transposed) form 0 U in (0=transposed,1=no-transposed) form 1 Equilibration (0=no,1=yes) 16 memory alignment in HPLAI_T_AFLOAT (> 0) EOF else cp testing/ptest/HPL.dat HPL.dat fi # Finally run and compare with the original hpl-2.3: OMP_NUM_THREADS=2 $(which mpirun) -n 4 testing/xhpl OMP_NUM_THREADS=2 $(which mpirun) -n 4 testing/xhpl_ai # If you download HPL-AI via git, you can clean the builds by: git clean -d -f -q ############################################################## # # The newest version of HPL-AI is available at # <https://github.com/wu-kan/HPL-AI/releases> # ############################################################## # # Bugs are tracked at # <https://github.com/wu-kan/HPL-AI/issues> # ############################################################## # # The souce code of HPL-AI is licensed under `COPYING`. # # The souce code of hpl-2.3 is licensed under `COPYRIGHT`. # ##############################################################
About
An implementation of HPL-AI Mixed-Precision Benchmark based on hpl-2.3
Topics
Resources
License
Stars
Watchers
Forks
Packages 0
No packages published