Skip to content

Commit

Permalink
[Misc]Add BNB quantization for MolmoForCausalLM (vllm-project#11551)
Browse files Browse the repository at this point in the history
Signed-off-by: Jee Jee Li <[email protected]>
Signed-off-by: xcnick <[email protected]>
  • Loading branch information
jeejeelee authored and xcnick committed Dec 31, 2024
1 parent 305f3cb commit d7924d8
Show file tree
Hide file tree
Showing 2 changed files with 83 additions and 33 deletions.
26 changes: 18 additions & 8 deletions vllm/model_executor/model_loader/loader.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,8 @@
import warnings
from abc import ABC, abstractmethod
from contextlib import contextmanager
from typing import Any, Dict, Generator, Iterable, List, Optional, Tuple, cast
from typing import (Any, Callable, Dict, Generator, Iterable, List, Optional,
Tuple, cast)

import gguf
import huggingface_hub
Expand Down Expand Up @@ -706,6 +707,8 @@ def __init__(self, load_config: LoadConfig):
# Store all module names (from transformers) that support
# BNB quantization.
self.target_modules: List[str] = []
# mapping weight names from transformers to vllm.
self.weight_mapper: Callable = lambda name: name

def _get_weight_files(
self,
Expand Down Expand Up @@ -763,9 +766,12 @@ def _prepare_weights(self, model_name_or_path: str,

def _hf_weight_iter(self, hf_weights_files, use_safetensors: bool):
if use_safetensors:
return safetensors_weights_iterator(hf_weights_files)
iterator = safetensors_weights_iterator(hf_weights_files)
else:
return pt_weights_iterator(hf_weights_files)
iterator = pt_weights_iterator(hf_weights_files)
for name, param in iterator:
# mapping weight names from transformers to vllm.
yield self.weight_mapper(name), param

def _get_quantized_weights_iterator(
self,
Expand All @@ -782,12 +788,12 @@ def _get_quantized_weights_iterator(
try:
import bitsandbytes

if bitsandbytes.__version__ < "0.44.0":
if bitsandbytes.__version__ < "0.45.0":
raise ImportError("bitsandbytes version is wrong. Please "
"install bitsandbytes>=0.44.0.")
"install bitsandbytes>=0.45.0.")
except ImportError as err:
raise ImportError("Please install bitsandbytes>=0.44.0 via "
"`pip install bitsandbytes>=0.44.0` to use "
raise ImportError("Please install bitsandbytes>=0.45.0 via "
"`pip install bitsandbytes>=0.45.0` to use "
"bitsandbytes quantizer.") from err

hf_weights_files, use_safetensors = self._prepare_weights(
Expand Down Expand Up @@ -991,7 +997,7 @@ def _get_bnb_target_modules(self, model: nn.Module) -> None:
if isinstance(module, (LinearBase, )):
last_name = name.split(".")[-1]
if sub_modules := inverse_stacked_mapping.get(last_name, []):
# Map vllm's names to transformers' names.
# Map vllm's names to transformers's names.
for sub_name in sub_modules:
self.target_modules.append(
name.replace(last_name, sub_name))
Expand All @@ -1013,6 +1019,10 @@ def _load_weights(self, model_config: ModelConfig,
f"Model {type(model).__name__} does not support BitsAndBytes "
"quantization yet.")

# For some models like Molmo, we need to use hf_to_vllm_mapper
# to ensure correct loading of weights.
if hf_to_vllm_mapper := getattr(model, "hf_to_vllm_mapper", None):
self.weight_mapper = lambda name: hf_to_vllm_mapper._map_name(name)
# Modules whose weights might have fused on disk
# we need their output_sizes to make shard in flight correctly with TP
self.maybe_fused_weights_modules: Dict[str, List[int]] = {}
Expand Down
90 changes: 65 additions & 25 deletions vllm/model_executor/models/molmo.py
Original file line number Diff line number Diff line change
Expand Up @@ -461,30 +461,71 @@ def forward(
return output


class MolmoMLP(nn.Module):
class SwiGLU(nn.Module):

def forward(self, x: torch.Tensor) -> torch.Tensor:
x, gate = x.chunk(2, dim=-1)
# Note that the order is reversed compared to
# SiluAndMul.
return x * F.silu(gate)


class LanuageModelMLP(nn.Module):
"""Molmo's LLM mlp."""

def __init__(self,
config: PretrainedConfig,
input_dim: Optional[int] = None,
quant_config: Optional[QuantizationConfig] = None,
proj_name: str = "gate_up_proj") -> None:
quant_config: Optional[QuantizationConfig] = None) -> None:
super().__init__()
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size // 2

# Molmo's LLM proj weights are already merged into the disk, while
# image_projector proj is separate. If the same proj_name were used, it
# would create ambiguity and make it difficult to support BNB and LoRA.
self.proj_name = proj_name
setattr(
self, proj_name,
MergedColumnParallelLinear(
input_dim or self.hidden_size,
[self.intermediate_size] * 2,
bias=False,
quant_config=quant_config,
))
self.gate_up_proj = MergedColumnParallelLinear(
input_dim or self.hidden_size,
[self.intermediate_size] * 2,
bias=False,
quant_config=quant_config,
)
# Activation function.
self.act_fn = SwiGLU()
# Feed-forward output projection.
self.down_proj = RowParallelLinear(
self.intermediate_size,
self.hidden_size,
bias=False,
quant_config=quant_config,
)

def forward(
self,
x: torch.Tensor,
) -> torch.Tensor:
gate_up, _ = self.gate_up_proj(x)
x = self.act_fn(gate_up)
x, _ = self.down_proj(x)
return x


class ImageProjectorMLP(nn.Module):
"""Molmo's image_projector mlp."""

def __init__(
self,
config: PretrainedConfig,
input_dim: Optional[int] = None,
quant_config: Optional[QuantizationConfig] = None,
) -> None:
super().__init__()
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size // 2

self.merged_linear = MergedColumnParallelLinear(
input_dim or self.hidden_size,
[self.intermediate_size] * 2,
bias=False,
quant_config=quant_config,
)
# Activation function.
self.act_fn = SiluAndMul()

Expand All @@ -500,7 +541,7 @@ def forward(
self,
x: torch.Tensor,
) -> torch.Tensor:
gate_up, _ = getattr(self, self.proj_name)(x)
gate_up, _ = self.merged_linear(x)
x = self.act_fn(gate_up)
x, _ = self.down_proj(x)
return x
Expand All @@ -523,9 +564,7 @@ def __init__(
prefix=f"{prefix}.self_attn")

# MLP block.
self.mlp = MolmoMLP(config,
quant_config=quant_config,
proj_name="gate_up_proj")
self.mlp = LanuageModelMLP(config, quant_config=quant_config)

# LayerNorm
assert config.layer_norm_type == "rms"
Expand Down Expand Up @@ -617,11 +656,10 @@ def __init__(
vision_config,
nlayers=len(self.vit_layers),
quant_config=quant_config)
self.image_projector = MolmoMLP(
self.image_projector = ImageProjectorMLP(
config,
input_dim=vision_config.image_emb_dim,
quant_config=quant_config,
proj_name="merged_linear",
)

image_dim = vision_config.image_emb_dim * len(self.vit_layers)
Expand Down Expand Up @@ -842,10 +880,6 @@ def load_weights(self, weights: Iterable[Tuple[str,
loaded_params: Set[str] = set()

for name, loaded_weight in weights:
if "gate_up_proj" in name:
up_proj, gate_proj = loaded_weight.chunk(2, dim=0)
loaded_weight = torch.cat([gate_proj, up_proj], dim=0)

if name.endswith(".bias") and name not in params_dict:
continue
if is_pp_missing_parameter(name, self):
Expand Down Expand Up @@ -1157,6 +1191,12 @@ class MolmoForCausalLM(nn.Module, SupportsMultiModal, SupportsPP):
},
)

# BitandBytes specific attributes
bitsandbytes_stacked_params_mapping = {
"gate_proj": ("merged_linear", 0),
"up_proj": ("merged_linear", 1),
}

def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
Expand Down

0 comments on commit d7924d8

Please sign in to comment.