Skip to content

yanqiangmiffy/llm-detect-ai

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

This repo contains our code and configurations for the LLM - Detect AI Generated Text competition. The summary of the solution is posted here. Please refer to the following sections for details on training and dependencies.

Section 1: Setup

1.1 Hardware

Jarvislabs.ai was our primary source of compute. Specifically, models were trained on the following instance:

Ubuntu 20.04.5 LTS (128 GB boot disk) Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz (7 vCPUs) 4 x NVIDIA A100 40GB GPU OR 4 x NVIDIA A6000 48GB GPU

1.2 Software

I used PyTorch-2.1 image from Jarvislabs.ai, which comes with:

  • Python 3.10.11
  • CUDA 12.3
  • Python packages installation: pip install -r requirements.txt

1.3 Datasets

Please make sure Kaggle API is installed. Then run the following script to download the required datasets:

chmod +x ./setup.sh
./setup.sh

Please note that the above script will create a datasets folder in the directory located one level above the current directory. The external datasets will be downloaded in the datasets folder.

Section 2: Training

2.1 LLM Models

For (Q)LoRA fine-tuning of the LLM models, please run the following commands:

accelerate launch ./code/train_r_detect.py \
--config-name conf_r_detect_mix_v16 \
use_wandb=false
accelerate launch ./code/train_r_detect.py \
--config-name conf_r_detect_mix_v26 \
use_wandb=false

Please note that 4xA100 GPUs on a single node was used for LLM fine-tuning. Training takes ~3 hours for mix_v16 and ~4 hours for mix_v26.

2.2 DeBERTa Ranking Models

To training the deberta-v3-large model with ranking loss, please run the following command:

accelerate launch ./code/train_r_ranking.py \
--config-name conf_r_ranking_large \
use_wandb=false

2.3 Embedding model

We trained an embedding model with supervised contrastive loss to find similar essays (KNN neighbors) for a given essay in the test set.

accelerate launch ./code/train_r_embed.py \
--config-name conf_r_embed \
use_wandb=false

Section 3: Text Generation

We fine-tuned a wide variety of LLMs using the CLM objective on PERSUADE corpus to produce student like essays. The fine-tuned checkpoints were uploaded as a Kaggle Dataset conjuring92/detect-ai-persuade-clm-ckpts. These checkpoints can be used to generate essays using the following commands:

accelerate launch ./code/generate_r_clm.py \
--config_path ./conf/r_clm/conf_r_clm_generate.yaml

accelerate launch ./code/generate_r_clm.py \
--config_path ./conf/r_clm/conf_r_clm_generate_tiny_llama.yaml

accelerate launch ./code/generate_r_clm.py \
--config_path ./conf/r_clm/conf_r_clm_generate_pythia.yaml

accelerate launch ./code/generate_r_clm.py \
--config_path ./conf/r_clm/conf_r_clm_generate_bloom.yaml

accelerate launch ./code/generate_r_clm.py \
--config_path ./conf/r_clm/conf_r_clm_generate_gpt2.yaml

accelerate launch ./code/generate_r_clm.py \
--config_path ./conf/r_clm/conf_r_clm_generate_opt.yaml

accelerate launch ./code/generate_r_clm.py \
--config_path ./conf/r_clm/conf_r_clm_generate_falcon.yaml

accelerate launch ./code/generate_r_clm.py \
--config_path ./conf/r_clm/conf_r_clm_generate_mpt.yaml

accelerate launch ./code/generate_r_clm.py \
--config_path ./conf/r_clm/conf_r_clm_generate_llama13b.yaml

accelerate launch ./code/generate_r_clm_from_scratch.py \
--config_path ./conf/r_clm/conf_r_clm_generate_mistral_persuade.yaml

Optionally, the fine-tuning of LLMs for text generation can be done using the following commands:

accelerate launch ./code/train_r_clm.py \
--config-name conf_r_clm_tiny_llama \
use_wandb=false

accelerate launch ./code/train_r_clm.py \
--config-name conf_r_clm_pythia \
use_wandb=false

accelerate launch ./code/train_r_clm.py \
--config-name conf_r_clm_bloom \
use_wandb=false

accelerate launch ./code/train_r_clm.py \
--config-name conf_r_clm_gpt2 \
use_wandb=false

accelerate launch ./code/train_r_clm.py \
--config-name conf_r_clm_opt \
use_wandb=false

accelerate launch ./code/train_r_clm.py \
--config-name conf_r_clm_falcon \
use_wandb=false

accelerate launch ./code/train_r_clm.py \
--config-name conf_r_clm_mpt \
use_wandb=false

accelerate launch ./code/train_r_clm.py \
--config-name conf_r_clm_llama13b \
use_wandb=false

accelerate launch ./code/train_r_clm_from_scratch.py \
--config-name conf_r_clm_mistral_persuade \
use_wandb=false

About

1st Place Solution for LLM - Detect AI Generated Text Kaggle Competition

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.4%
  • Shell 0.6%