Point Cloud Compression (PCC) is a collection of different point cloud compression methods along with varying applcation usages.
This repository is an end-to-end point cloud compression algorithms. The technique leverages the temporal and spatial characterizations in point cloud.
In reality, most of objects in the real world are constructed based on certain regular shapes. It is uncommon that we cannot express those shapes in mathematically expression. Therefore, we leverage the mathematical expression to fitting a surface to a given point cloud and encode the coefficients.
For more details, please check out our paper: Real-Time Spatio-Temporal LiDAR Point Cloud Compression
Dependancies:
- OpenCV4
- Boost Library
We only test our code in Ubuntu 18.04.
To compile the entire repository, go to the src
directory, use Makefile
to compile the binary.
$ cd src; make
Note: in Makefile
, we use OpenCV4
, but you can change it to different version if necessary.
You will see three different bianry:
pcc_encoder
: an encoder to encode one point cloud frame.pcc_decoder
: an decoder to decode one point cloud frame.pcc_test
: this is an end-to-end test suite.pcc_stream_encoder
: an encoder to encode a stream of multiple point cloud frames.pcc_stream_decoder
: an decoder to decode a stream of multiple point cloud frames.pcc_stream_test
: this is an end-to-end test for streaming compression.
We provide a simple data sample in our data
directory. To encode this point cloud:
$ ./pcc_encoder --path ../data --file 0000000000.bin -p 0.18 -y 0.45 -f binary -l 4 -t 0.5 --out frame.tar.gz
This will produce a tar ball file named frame.tar.gz
that contained the compressed point cloud. --file
flag is the input point cloud in binary form. --out
is the output compressed file.
To decompress this point cloud, use:
$ ./pcc_decoder -p 0.18 -y 0.45 -f binary -l 4 --file frame.tar.gz
This will recontruct the compressed point cloud and store the recontructed point cloud into file named 0000000000.bin
.
To test the end-to-end compression, use:
$ ./pcc_test --file ../data/0000000000.bin -p 0.18 -y 0.45 -f binary -l 4 -t 0.5
This will give many detailed information about compression time, accuracy,etc.
To compress multiple frame together, we can use:
$ ./pcc_stream_encoder -p 0.18 -y 0.45 -f binary -l 4 -t 0.5 --out frames.tar.gz --input-path ../data --input-files 0000000000.bin 0000000001.bin 0000000002.bin 0000000003.bin 0000000004.bin
This command will compress 5 point clouds (0000000000.bin-0000000004.bin) from directory ../data
. The output result stores in frames.tar.gz
.
To recover these 5 point clouds, use the command:
$ ./pcc_stream_decoder -p 0.18 -y 0.45 -f binary -l 4 --input frames.tar.gz
This will reverse the compression process and generate 5 raw point cloud data. frames.tar.gz
can automatically store the ortiginal filenames.
To test the end-to-end compression and decompression:
$ ./pcc_stream_test -p 0.18 -y 0.45 -f binary -l 4 -t 0.5 --out frames.tar.gz --input-path ../data --input-files 0000000000.bin 0000000001.bin 0000000002.bin 0000000003.bin 0000000004.bin
- p: horizontal degree granularity.
0.18
stands for 0.18 degree. - y: vertical degree granularity.
0.45
stands for 0.45 degree. - f: is the data format, typically the data format is binary.
- l: tile dimension,
4
stands for 4x4 tile dimension. - t: error threshold.
0.5
stands for when fitting the point clouds, the error between fitted value and original one is below 0.5.
These compression encoder and decoder are designed for KITTI dataset and LiDAR device, Velodyne HDL-64E. More specifically, the vertical angle range for point cloud is from -25 degree to 5 degree. For other application settings, please check out config.h
and change parameters, ROW_OFFSET
, COL_OFFSET
, VERTICAL_DEGREE
and HORIZONTAL_DEGREE
.
The compression rate from this implementation will be lower than the number from the original paper, because we use more compact bit representation for encoded data. In this repo implementation, the data representation is looser, this implementation use the common c++ data types like CHAR, INT, FLOAT, SHORT, etc. Therefore, the compression rate will decrease to some extents.
If you think this work is useful in your research, please consider cite our paper:
@article{yu2020pcc,
title={Real-Time Spatio-Temporal LiDAR Point Cloud Compression},
author={Feng, Yu and Liu, Shaoshan and Zhu, Yuhao},
journal={2020 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS)},
year={2020}
}
For more experimental data, please check out raw data from KITTI. You can directly use the Velodyne data directly, just need to specify the data path and input data names during encoding and decoding.
You can also check out:
- PCL library: a open-sourced point cloud library.
- Alglib: a semi-open-sourced algibra library.
- FFMPEG: a free video/audio compression platform.
- 3D machine learning: a collection of all recent progress in 3D machine learning.
how to use it
在编译完成后生成的可执行文件分别执行的意义:
- 'pcc_encoder':对单帧点云进行编码的编码器。
- 'pcc-decoder':解码单帧点云的解码器。
- 'pcc_test':这是一个完整的测试代码。
- 'pcc_stream_encoder':对多帧的点云数据流进行编码的编码器。
- 'pcc_stream_decoder':解码多帧的点云数据流解码器。
- 'pcc_stream_test':这是多帧数据流完整的测试。
我们根据作者提供示例进行以下的测试