-
Ubuntu 16.04.2 - ROS Kinetic
-
Ubuntu 18.04.1 - ROS Melodic
In Datasets_obj folder you can printing the object texture onto a box or can of the exact size.
NVIDIA Deep learning Dataset Synthesizer (Synthetic-Data-UE4)
Step 1: Download the DOPE code
cd ~/catkin_ws/src
git clone https://github.com/yehengchen/DOPE-ROS-D435.git
Step 2: Install python dependencies
cd ~/catkin_ws/src/dope
pip install -r requirements.txt
Step 3: Install ROS dependencies
cd ~/catkin_ws
rosdep install --from-paths src -i --rosdistro kinetic
sudo apt-get install ros-kinetic-rosbash ros-kinetic-ros-comm
Build
cd ~/catkin_ws
catkin_make
Step 4: Download the weights and save them to the weights
folder, i.e., ~/catkin_ws/src/dope/weights/
.
Step 1: Install the latest Intel® RealSense™ SDK 2.0
Install from Debian Package - In that case treat yourself as a developer. Make sure you follow the instructions to also install librealsense2-dev and librealsense-dkms packages. OR Build from sources by downloading the latest Intel® RealSense™ SDK 2.0 and follow the instructions under Linux Installation
Step 2: Install the ROS distribution Install ROS Kinetic, on Ubuntu 16.04
Step 3: Install Intel® RealSense™ ROS from Sources
cd ~/catkin_ws/src/
Clone the latest Intel® RealSense™ ROS from here into 'catkin_ws/src/'
git clone https://github.com/IntelRealSense/realsense-ros.git
cd realsense-ros/
git checkout `git tag | sort -V | grep -P "^\d+\.\d+\.\d+" | tail -1`
cd ..
Make sure all dependent packages are installed. You can check .travis.yml file for reference. Specifically, make sure that the ros package ddynamic_reconfigure is installed. If ddynamic_reconfigure cannot be installed using APT, you may clone it into your workspace 'catkin_ws/src/' from here (Version 0.2.0)
catkin_init_workspace
cd ..
catkin_make clean
catkin_make -DCATKIN_ENABLE_TESTING=False -DCMAKE_BUILD_TYPE=Release
catkin_make install
echo "source ~/catkin_ws/devel/setup.bash" >> ~/.bashrc
source ~/.bashrc
-
[IntelRealSense -Linux Distribution]
sudo apt-key adv --keyserver keys.gnupg.net --recv-key F6E65AC044F831AC80A06380C8B3A55A6F3EFCDE || sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv-key F6E65AC044F831AC80A06380C8B3A55A6F3EFCDE sudo add-apt-repository "deb http://realsense-hw-public.s3.amazonaws.com/Debian/apt-repo bionic main" -u sudo apt-get install librealsense2-dkms sudo apt-get install librealsense2-utils sudo apt-get install librealsense2-dev sudo apt-get install librealsense2-dbg #(리얼센스 패키지 설치 확인하기) realsense-viewer
-
- catkin workspace
mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src/
- Download realsense-ros pkg
git clone https://github.com/IntelRealSense/realsense-ros.git cd realsense-ros/ git checkout `git tag | sort -V | grep -P "^\d+\.\d+\.\d+" | tail -1` cd ..
- Download ddynamic_reconfigure
cd src git clone https://github.com/pal-robotics/ddynamic_reconfigure/tree/kinetic-devel cd ..
- Pkg installation
catkin_init_workspace cd .. catkin_make clean catkin_make -DCATKIN_ENABLE_TESTING=False -DCMAKE_BUILD_TYPE=Release catkin_make install echo "source ~/catkin_ws/devel/setup.bash" >> ~/.bashrc source ~/.bashrc
- Run D435 node
roslaunch realsense2_camera rs_camera.launch
- Run rviz testing
rosrun rviz rvzi Add > Image to view the raw RGB image
1. Start ROS master
cd ~/catkin_ws
source devel/setup.bash
roscore
2. Start camera node (or start your own camera node)
Realsense D435 & usb_cam node (./dope/config/config_pose.yaml):
topic_camera: "/camera/color/image_raw" #"/usb_cam/image_raw"
topic_camera_info: "/camera/color/camera_info" #"/usb_cam/camera_info"
Start camera node:
roslaunch realsense2_camera rs_rgbd.launch # Publishes RGB images to `/camera/color/image_raw`
3. Start DOPE node
roslaunch dope dope.launch [config:=/path/to/my_config.yaml] # Config file is optional; default is `config_pose.yaml`
4. Start rviz node
rosrun rviz rviz
- The following ROS topics are published (assuming
topic_publishing == 'dope'
):
/dope/webcam_rgb_raw # RGB images from camera
/dope/dimension_[obj_name] # dimensions of object
/dope/pose_[obj_name] # timestamped pose of object
/dope/rgb_points # RGB images with detected cuboids overlaid
/dope/detected_objects # vision_msgs/Detection3DArray of all detected objects
/dope/markers # RViz visualization markers for all objects
*Note:* `[obj_name]` is in {cracker, gelatin, meat, mustard, soup, sugar}
-
To debug in RViz, run
rviz
, then add one or more of the following displays:Add > Image
to view the raw RGB image or the image with cuboids overlaidAdd > Pose
to view the object coordinate frame in 3D.Add > MarkerArray
to view the cuboids, meshes etc. in 3D.Add > Camera
to view the RGB Image with the poses and markers from above.
If you use this tool in a research project, please cite as follows:
@inproceedings{tremblay2018corl:dope,
author = {Jonathan Tremblay and Thang To and Balakumar Sundaralingam and Yu Xiang and Dieter Fox and Stan Birchfield},
title = {Deep Object Pose Estimation for Semantic Robotic Grasping of Household Objects},
booktitle = {Conference on Robot Learning (CoRL)},
url = "https://arxiv.org/abs/1809.10790",
year = 2018
}
Copyright (C) 2018 NVIDIA Corporation. All rights reserved. Licensed under the CC BY-NC-SA 4.0 license.
DOPE - Deep Object Pose Estimation (DOPE) – ROS inference (CoRL 2018)