Skip to content

Macadam是一个以Tensorflow(Keras)和bert4keras为基础,专注于文本分类、序列标注和关系抽取的自然语言处理工具包。支持RANDOM、WORD2VEC、FASTTEXT、BERT、ALBERT、ROBERTA、NEZHA、XLNET、ELECTRA、GPT-2等EMBEDDING嵌入; 支持FineTune、FastText、TextCNN、CharCNN、BiRNN、RCNN、DCNN、CRNN、DeepMoji、SelfAttention、HAN、Capsule等文本分类算法; 支持CRF、Bi-LSTM-CRF、CNN-LSTM、DGCNN、Bi-LSTM-LAN、Lattice-LSTM-Batch、MRC等序列标注算法。

License

Notifications You must be signed in to change notification settings

yongzhuo/Macadam

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PyPI Build Status PyPI_downloads Stars Forks Join the chat at https://gitter.im/yongzhuo/Macadam

Macadam是一个以Tensorflow(Keras)和bert4keras为基础,专注于文本分类、序列标注和关系抽取的自然语言处理工具包。支持RANDOM、WORD2VEC、FASTTEXT、BERT、ALBERT、ROBERTA、NEZHA、XLNET、ELECTRA、GPT-2等EMBEDDING嵌入; 支持FineTune、FastText、TextCNN、CharCNN、BiRNN、RCNN、DCNN、CRNN、DeepMoji、SelfAttention、HAN、Capsule等文本分类算法; 支持CRF、Bi-LSTM-CRF、CNN-LSTM、DGCNN、Bi-LSTM-LAN、Lattice-LSTM-Batch、MRC等序列标注算法。

目录

安装

pip install Macadam

# 清华镜像源
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple Macadam

数据

数据来源

数据格式

1. 文本分类  (txt格式, 每行为一个json):

{"x": {"text": "人站在地球上为什么没有头朝下的感觉", "texts2": []}, "y": "教育"}
{"x": {"text": "我的小baby", "texts2": []}, "y": ["娱乐"]}
{"x": {"text": "请问这起交通事故是谁的责任居多小车和摩托车发生事故在无红绿灯", "texts2": []}, "y": "娱乐"}

2. 序列标注 (txt格式, 每行为一个json):

{"x": {"text": "海钓比赛地点在厦门与金门之间的海域。", "texts2": []}, "y": ["O", "O", "O", "O", "O", "O", "O", "B-LOC", "I-LOC", "O", "B-LOC", "I-LOC", "O", "O", "O", "O", "O", "O"]}
{"x": {"text": "参加步行的有男有女,有年轻人,也有中年人。", "texts2": []}, "y": ["O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O"]}
{"x": {"text": "山是稳重的,这是我最初的观念。", "texts2": []}, "y": ["O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O"]}
{"x": {"text": "立案不结、以罚代刑等问题有较大改观。", "texts2": []}, "y": ["O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O"]}

使用方式

更多样例sample详情见test目录

文本分类, text-classification

# !/usr/bin/python
# -*- coding: utf-8 -*-
# @time    : 2020/5/8 21:33
# @author  : Mo
# @function: test trainer of bert


# 适配linux
import sys
import os
path_root = os.path.abspath(os.path.join(os.path.dirname(__file__), "../.."))
sys.path.append(path_root)
# cpu-gpu与tf.keras
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
os.environ["TF_KERAS"] = "1"
# macadam
from macadam.conf.path_config import path_root, path_tc_baidu_qa_2019, path_tc_thucnews
from macadam.tc import trainer


if __name__=="__main__":
    # bert-embedding地址, 必传
    path_embed = "D:/soft_install/dataset/bert-model/chinese_L-12_H-768_A-12"
    path_checkpoint = path_embed + "/bert_model.ckpt"
    path_config = path_embed + "/bert_config.json"
    path_vocab = path_embed + "/vocab.txt"

    # 训练/验证数据地址, 必传
    # path_train = os.path.join(path_tc_thucnews, "train.json")
    # path_dev = os.path.join(path_tc_thucnews, "dev.json")
    path_train = os.path.join(path_tc_baidu_qa_2019, "train.json")
    path_dev = os.path.join(path_tc_baidu_qa_2019, "dev.json")

    # 网络结构, 嵌入模型, 大小写都可以, 必传
    # 网络模型架构(Graph), "FineTune", "FastText", "TextCNN", "CharCNN",
    # "BiRNN", "RCNN", "DCNN", "CRNN", "DeepMoji", "SelfAttention", "HAN", "Capsule"
    network_type = "TextCNN"
    # 嵌入(embedding)类型, "ROBERTA", "ELECTRA", "RANDOM", "ALBERT", "XLNET", "NEZHA", "GPT2", "WORD", "BERT"
    embed_type = "BERT"
    # token级别, 一般为"char", 只有random和word的embedding时存在"word"
    token_type = "CHAR"
    # 任务, "TC"(文本分类), "SL"(序列标注), "RE"(关系抽取)
    task = "TC"
    
    # 模型保存目录, 必传
    path_model_dir = os.path.join(path_root, "data", "model", network_type)
    # 开始训练, 可能前几轮loss较大acc较低, 后边会好起来
    trainer(path_model_dir, path_embed, path_train, path_dev, path_checkpoint, path_config, path_vocab,
            network_type=network_type, embed_type=embed_type, token_type=token_type, task=task)
    mm = 0

序列标注, sequence-labeling

# !/usr/bin/python
# -*- coding: utf-8 -*-
# @time    : 2020/5/8 21:33
# @author  : Mo
# @function: test trainer of bert


# 适配linux
import sys
import os
path_root = os.path.abspath(os.path.join(os.path.dirname(__file__), "../.."))
sys.path.append(path_root)
## cpu-gpu与tf.keras
# os.environ["CUDA_VISIBLE_DEVICES"] = "0"
os.environ["TF_KERAS"] = "1"

# 地址, tf.keras
from macadam.conf.path_config import path_embed_bert, path_embed_word2vec_word, path_embed_word2vec_char
from macadam.conf.path_config import path_root, path_ner_people_1998, path_ner_clue_2020
from macadam.sl import trainer


if __name__=="__main__":
    # bert-embedding地址, 必传
    path_embed = path_embed_bert # path_embed_bert, path_embed_word2vec_word, path_embed_word2vec_char
    path_checkpoint = os.path.join(path_embed + "bert_model.ckpt")
    path_config = os.path.join(path_embed + "bert_config.json")
    path_vocab = os.path.join(path_embed + "vocab.txt")

    # # 训练/验证数据地址
    # path_train = os.path.join(path_ner_people_1998, "train.json")
    # path_dev = os.path.join(path_ner_people_1998, "dev.json")
    path_train = os.path.join(path_ner_clue_2020, "ner_clue_2020.train")
    path_dev = os.path.join(path_ner_clue_2020, "ner_clue_2020.dev")
    # 网络结构
    # "CRF", "Bi-LSTM-CRF", "Bi-LSTM-LAN", "CNN-LSTM", "DGCNN", "LATTICE-LSTM-BATCH"
    network_type = "CRF"
    # 嵌入(embedding)类型, "ROOBERTA", "ELECTRA", "RANDOM", "ALBERT", "XLNET", "NEZHA", "GPT2", "WORD", "BERT"
    # MIX,  WC_LSTM时候填两个["RANDOM", "WORD"], ["WORD", "RANDOM"], ["RANDOM", "RANDOM"], ["WORD", "WORD"]
    embed_type = "RANDOM" 
    token_type = "CHAR"
    task = "SL"
    lr = 1e-5 if embed_type in ["ROBERTA", "ELECTRA", "ALBERT", "XLNET", "NEZHA", "GPT2", "BERT"] else 1e-3
    # 模型保存目录, 如果不存在则创建
    path_model_dir = os.path.join(path_root, "data", "model", network_type)
    if not os.path.exists(path_model_dir):
        os.mkdir(path_model_dir)
    # 开始训练
    trainer(path_model_dir, path_embed, path_train, path_dev,
            path_checkpoint, path_config, path_vocab,
            network_type=network_type, embed_type=embed_type,
            task=task, token_type=token_type,
            is_length_max=False, use_onehot=False, use_file=False, use_crf=True,
            layer_idx=[-2], learning_rate=lr,
            batch_size=30, epochs=12, early_stop=6, rate=1)
    mm = 0

TODO

  • 文本分类TC(TextGCN)
  • 序列标注SL(MRC)
  • 关系抽取RE
  • 嵌入embed(xlnet)

paper

文本分类(TC, text-classification)

序列标注(SL, sequence-labeling)

参考

Reference

For citing this work, you can refer to the present GitHub project. For example, with BibTeX:

@misc{Macadam,
    howpublished = {url{https://github.com/yongzhuo/Macadam}},
    title = {Macadam},
    author = {Yongzhuo Mo},
    publisher = {GitHub},
    year = {2020}
}

*希望对你有所帮助!

About

Macadam是一个以Tensorflow(Keras)和bert4keras为基础,专注于文本分类、序列标注和关系抽取的自然语言处理工具包。支持RANDOM、WORD2VEC、FASTTEXT、BERT、ALBERT、ROBERTA、NEZHA、XLNET、ELECTRA、GPT-2等EMBEDDING嵌入; 支持FineTune、FastText、TextCNN、CharCNN、BiRNN、RCNN、DCNN、CRNN、DeepMoji、SelfAttention、HAN、Capsule等文本分类算法; 支持CRF、Bi-LSTM-CRF、CNN-LSTM、DGCNN、Bi-LSTM-LAN、Lattice-LSTM-Batch、MRC等序列标注算法。

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages