Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add FEAWAD #48

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions README.rst
Original file line number Diff line number Diff line change
Expand Up @@ -418,6 +418,7 @@ Paper Title
Learning Representations of Ultrahigh-dimensional Data for Random Distance-based Outlier Detection SIGKDD 2018 [#Pang2018Learning]_ `[PDF] <https://arxiv.org/pdf/1806.04808.pdf>`_
Learning representations for outlier detection on a budget Preprint 2015 [#Micenkova2015Learning]_ `[PDF] <https://arxiv.org/pdf/1507.08104.pdf>`_
XGBOD: improving supervised outlier detection with unsupervised representation learning IJCNN 2018 [#Zhao2018Xgbod]_ `[PDF] <http://www.andrew.cmu.edu/user/yuezhao2/papers/18-ijcnn-xgbod.pdf>`_
Feature Encoding With Autoencoders for Weakly Supervised Anomaly Detection TNNLS 2021 [#Zhou2021Feature]_ `[PDF] <https://arxiv.org/pdf/2105.10500.pdf>`_, `[Code] <https://github.com/yj-zhou/Feature_Encoding_with_AutoEncoders_for_Weakly-supervised_Anomaly_Detection>`_
================================================================================================== ============================ ===== ============================ ==========================================================================================================================================================================


Expand Down Expand Up @@ -853,6 +854,8 @@ References

.. [#Zhou2019AnomalyNet] Zhou, J.T., Du, J., Zhu, H., Peng, X., Liu, Y. and Goh, R.S.M., 2019. AnomalyNet: An anomaly detection network for video surveillance. *IEEE Transactions on Information Forensics and Security*.

.. [#Zhou2021Feature] Zhou, Y., Song, X., Zhang, Y., Liu, F., Zhu, C., & Liu, L. (2021). Feature encoding with autoencoders for weakly supervised anomaly detection. IEEE Transactions on Neural Networks and Learning Systems, 33(6), 2454-2465.

.. [#Zhu2019Tripartite] Zhu, Y. and Yang, K., 2019. Tripartite Active Learning for Interactive Anomaly Discovery. *IEEE Access*.

.. [#Zimek2012A] Zimek, A., Schubert, E. and Kriegel, H.P., 2012. A survey on unsupervised outlier detection in high‐dimensional numerical data. *Statistical Analysis and Data Mining: The ASA Data Science Journal*\ , 5(5), pp.363-387.
Expand Down
3 changes: 3 additions & 0 deletions README_CN.rst
Original file line number Diff line number Diff line change
Expand Up @@ -304,6 +304,7 @@ Paper Title
Learning Representations of Ultrahigh-dimensional Data for Random Distance-based Outlier Detection SIGKDD 2018 [#Pang2018Learning]_ `[PDF] <https://arxiv.org/pdf/1806.04808.pdf>`_
Learning representations for outlier detection on a budget Preprint 2015 [#Micenkova2015Learning]_ `[PDF] <https://arxiv.org/pdf/1507.08104.pdf>`_
XGBOD: improving supervised outlier detection with unsupervised representation learning IJCNN 2018 [#Zhao2018Xgbod]_ `[PDF] <https://www.yuezhao.me/s/edited_XGBOD.pdf>`_
Feature Encoding With Autoencoders for Weakly Supervised Anomaly Detection TNNLS 2021 [#Zhou2021Feature]_ `[PDF] <https://arxiv.org/pdf/2105.10500.pdf>`_, `[Code] <https://github.com/yj-zhou/Feature_Encoding_with_AutoEncoders_for_Weakly-supervised_Anomaly_Detection>`_
================================================================================================== ============================ ===== ============================ ==========================================================================================================================================================================


Expand Down Expand Up @@ -548,6 +549,8 @@ References

.. [#Zhao2019LSCP] Zhao, Y., Nasrullah, Z., Hryniewicki, M.K. and Li, Z., 2019, May. LSCP: Locally selective combination in parallel outlier ensembles. In *Proceedings of the 2019 SIAM International Conference on Data Mining (SDM)*, pp. 585-593. Society for Industrial and Applied Mathematics.

.. [#Zhou2021Feature] Zhou, Y., Song, X., Zhang, Y., Liu, F., Zhu, C., & Liu, L. (2021). Feature encoding with autoencoders for weakly supervised anomaly detection. IEEE Transactions on Neural Networks and Learning Systems, 33(6), 2454-2465.

.. [#Zhu2019Tripartite] Zhu, Y. and Yang, K., 2019. Tripartite Active Learning for Interactive Anomaly Discovery. *IEEE Access*.

.. [#Zimek2012A] Zimek, A., Schubert, E. and Kriegel, H.P., 2012. A survey on unsupervised outlier detection in high‐dimensional numerical data. *Statistical Analysis and Data Mining: The ASA Data Science Journal*\ , 5(5), pp.363-387.
Expand Down