InEKF is a light-weight library for Invariant Extended Kalman Filter on matrix Lie groups. InEKF is implemented for systems whose states evolve on the abstract
-
GCC and CMake
-
Eigen3: Linear algebra
On Ubuntu 18.04, we can install CMake and Eigen3 following:
# gcc and cmake sudo apt-get install gcc cmake # Eigen3 sudo apt-get install libeigen3-dev
-
We can build the InEKF library following:
git clone https://github.com/zha0ming1e/InEKF cd ./InEKF/ mkdir build && cd build/ cmake .. && make -j8 # or: cmake .. && make -j$(( $( cat /proc/cpuinfo | grep "processor" | sort -u | wc -l ) - 1 ))
-
InEKF can be included in your cmake project by adding the InEKF directory to your CMakeLists.txt:
find_package(inekf) include_directories(${inekf_INCLUDE_DIRS})
-
Barrau, A. and Bonnabel, S., 2016. The invariant extended Kalman filter as a stable observer. IEEE Transactions on Automatic Control, 62(4), pp.1797-1812.
@article{barrau2016invariant, title={The invariant extended Kalman filter as a stable observer}, author={Barrau, Axel and Bonnabel, Silv{\`e}re}, journal={IEEE Transactions on Automatic Control}, volume={62}, number={4}, pages={1797--1812}, year={2016}, publisher={IEEE} }
-
Hartley, R., Ghaffari, M., Eustice, R.M. and Grizzle, J.W., 2020. Contact-aided invariant extended Kalman filtering for robot state estimation. The International Journal of Robotics Research, 39(4), pp.402-430.
@article{hartley2020contact, title={Contact-aided invariant extended Kalman filtering for robot state estimation}, author={Hartley, Ross and Ghaffari, Maani and Eustice, Ryan M and Grizzle, Jessy W}, journal={The International Journal of Robotics Research}, volume={39}, number={4}, pages={402--430}, year={2020}, publisher={SAGE Publications Sage UK: London, England} }
-
Bloesch, M., Hutter, M., Hoepflinger, M.A., Leutenegger, S., Gehring, C., Remy, C.D. and Siegwart, R., 2013. State estimation for legged robots-consistent fusion of leg kinematics and IMU. Robotics, 17, pp.17-24.
@article{bloesch2013state, title={State estimation for legged robots-consistent fusion of leg kinematics and IMU}, author={Bloesch, Michael and Hutter, Marco and Hoepflinger, Mark A and Leutenegger, Stefan and Gehring, Christian and Remy, C David and Siegwart, Roland}, journal={Robotics}, volume={17}, pages={17--24}, year={2013}, publisher={MIT Press} }
-
Ramadoss, P., Romualdi, G., Dafarra, S., Chavez, F.J.A., Traversaro, S. and Pucci, D., 2021, May. Diligent-kio: A proprioceptive base estimator for humanoid robots using extended kalman filtering on matrix lie groups. In 2021 IEEE International Conference on Robotics and Automation (ICRA) (pp. 2904-2910). IEEE.
@inproceedings{ramadoss2021diligent, title={Diligent-kio: A proprioceptive base estimator for humanoid robots using extended kalman filtering on matrix lie groups}, author={Ramadoss, Prashanth and Romualdi, Giulio and Dafarra, Stefano and Chavez, Francisco Javier Andrade and Traversaro, Silvio and Pucci, Daniele}, booktitle={2021 IEEE International Conference on Robotics and Automation (ICRA)}, pages={2904--2910}, year={2021}, organization={IEEE} }
-
Ramadoss, P., Romualdi, G., Dafarra, S., Traversaro, S. and Pucci, D., 2022, October. Comparison of EKF-Based Floating Base Estimators for Humanoid Robots with Flat Feet. In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 6780-6787). IEEE.
@inproceedings{ramadoss2022comparison, title={Comparison of EKF-Based Floating Base Estimators for Humanoid Robots with Flat Feet}, author={Ramadoss, Prashanth and Romualdi, Giulio and Dafarra, Stefano and Traversaro, Silvio and Pucci, Daniele}, booktitle={2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)}, pages={6780--6787}, year={2022}, organization={IEEE} }