Skip to content

zhiqiangzhongddu/AdamGNN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Multi-grained Semantics-aware Graph Neural Networks

Implementation of the AdamGNN with Pytorch, another implementation with Tensorflow incoming.

Required packages

The code has been tested running under Python 3.7.1. with the following packages installed (along with their dependencies):

  • numpy == 1.18.1
  • pandas == 1.0.3
  • scikit-learn == 0.22.2
  • networkx == 2.4
  • pytorch == 1.4.0
  • torch_geometric == 1.4.2

Data requirement

All eight datasets we used in the paper are all public datasets which can be downloaded from the internet.

Code execution

Two demo file is given to show the execution of link prediction (LP) and node classification (NC) tasks.

Citation

Please cite our paper if you make use of this code in your own work:

@article{ZLP221,
author = {Zhiqiang Zhong and Cheng{-}Te Li and Jun Pang},
title = {Multi-grained Semantics-aware Graph Neural Networks},
journal = {IEEE Transactions on Knowledge and Data Engineering (TKDE)},
year = {2022},
}

About

[TKDE] Multi-grained Semantics-aware Graph Neural Networks (https://arxiv.org/abs/2010.00238)

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published