This repository contains code and resources of our paper:
Navigating the Shadows: Unveiling Effective Disturbances for Modern AI Content Detectors. In ACL 2024, Main Conference
Perturbed AI-text data available at ai-text-perturbed-data
python attack/flint/do_trans.py \
--test_file data/CheckGPT/original/dev.jsonl \
--output_dir output/checkgpt/transformations/dev/ \
--text_key text \
--gpus 0,1,2,3,4,5,6,7 \
--num_workers 8 \
--trans_method dev
python detect/classifier.py \
--test_file data/CheckGPT/perturbed/test-5k/BackTrans_Helsinki_r3.jsonl \
--output_dir output/checkgpt/detect \
--model_path output/checkgpt/model/roberta-base \
--batch_size_per_device 64
python defence/train_al.py \
--model_name_or_path output/checkgpt/model/roberta-base \
--train_dir data/CheckGPT/perturbed/dev-85k \
--output_dir output/checkgpt/model/roberta-budget-al \
--per_device_train_batch_size 16 \
--per_device_eval_batch_size 256 \
--max_seq_length 512 \
--learning_rate 5e-5 \
--lr_scheduler_type linear \
--num_train_epochs 1 \
--warmup_ratio 0.05 \
--evaluation_strategy no \
--save_strategy steps \
--logging_steps 10 \
--save_steps 50 \
--save_total_limit 10 \
--shuffle_train true \
--do_train true
If you find our paper/resources useful, please cite:
@inproceedings{Zhou2024_ACL,
author = {Ying Zhou and
Ben He and
Le Sun},
title = {Navigating the Shadows: Unveiling Effective Disturbances for Modern AI Content Detectors},
booktitle = {Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics.},
year = {2024},
}