Skip to content

zyqin19/PROTOSEG

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PROTOSEG

Code for our paper: Unified 3D Segmenter As Prototypical Classifiers

arch

Data Preparation

ScanNet v2

The preprocessing support semantic and instance segmentation for both ScanNet20 and ScanNet200.

  • Download the ScanNet v2 dataset.
  • Run preprocessing code for raw ScanNet as follows:
# RAW_SCANNET_DIR: the directory of downloaded ScanNet v2 raw dataset.
# PROCESSED_SCANNET_DIR: the directory of processed ScanNet dataset (output dir).
python pcr/datasets/preprocessing/scannet/preprocess_scannet.py --dataset_root ${RAW_SCANNET_DIR} --output_root ${PROCESSED_SCANNET_DIR}
  • Link processed dataset to codebase:
# PROCESSED_SCANNET_DIR: the directory of processed ScanNet dataset.
mkdir data
ln -s ${RAW_SCANNET_DIR} ${CODEBASE_DIR}/data/scannet

S3DIS

  • Download S3DIS data by filling this Google form. Download the Stanford3dDataset_v1.2_Aligned_Version.zip file and unzip it.
  • The original S3DIS data contains some bugs data need manually fix it. xxx^@xxx
  • Run preprocessing code for S3DIS as follows:
# RAW_S3DIS_DIR: the directory of downloaded Stanford3dDataset_v1.2_Aligned_Version dataset.
# PROCESSED_S3DIS_DIR: the directory of processed s3dis dataset (output dir).
python pcr/datasets/preprocessing/s3dis/preprocess_s3dis.py --dataset_root ${RAW_S3DIS_DIR} --output_root ${PROCESSED_S3DIS_DIR}
  • Link processed dataset to codebase.
# PROCESSED_S3DIS_DIR: the directory of processed s3dis dataset.
mkdir data
ln -s ${RAW_S3DIS_DIR} ${CODEBASE_DIR}/data/s3dis

Semantic KITTI

# SEMANTIC_KITTI_DIR: the directory of Semantic KITTI dataset.
mkdir data
ln -s ${SEMANTIC_KITTI_DIR} ${CODEBASE_DIR}/data/semantic_kitti

Training

# ScanNet
sh scripts/train.sh -g 4 -d scannet -c semseg-protoseg-0-base -n semseg-protoseg-0-base
# s3dis
sh scripts/train.sh -g 4 -d s3dis -c semseg-protoseg-0-base -n semseg-protoseg-0-base

Acknowledge

@inproceedings{wu2022point,
  title={Point transformer v2: Grouped vector attention and partition-based pooling},
  author={Wu, Xiaoyang and Lao, Yixing and Jiang, Li and Liu, Xihui and Zhao, Hengshuang},
  booktitle={NeurIPS},
  year={2022}
}
@inproceedings{wang2023visual,
  title={Visual recognition with deep nearest centroids},
  author={Wang, Wenguan and Han, Cheng and Zhou, Tianfei and Liu, Dongfang},
  booktitle={ICLR},
  year={2023}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published